Biblio
The main challenge for malware researchers is the large amount of data and files that need to be evaluated for potential threats. Researchers analyze a large number of new malware daily and classify them in order to extract common features. Therefore, a system that can ensure and improve the efficiency and accuracy of the classification is of great significance for the study of malware characteristics. A high-performance, high-efficiency automatic classification system based on multi-feature selection fusion of machine learning is proposed in this paper. Its performance and efficiency, according to our experiments, have been greatly improved compared to single-featured systems.
Malware classification is the process of categorizing the families of malware on the basis of their signatures. This work focuses on classifying the emerging malwares on the basis of comparable features of similar malwares. This paper proposes a novel framework that categorizes malware samples into their families and can identify new malware samples for analysis. For this six diverse classification techniques of machine learning are used. To get more comparative and thus accurate classification results, analysis is done using two different tools, named as Knime and Orange. The work proposed can help in identifying and thus cleaning new malwares and classifying malware into their families. The correctness of family classification of malwares is investigated in terms of confusion matrix, accuracy and Cohen's Kappa. After evaluation it is analyzed that Random Forest gives the highest accuracy.
Knowing malware types in every malware attacks is very helpful to the administrators to have proper defense policies for their system. It must be a massive benefit for the organization as well as the social if the automatic protection systems could themselves detect, classify an existence of new malware types in the whole network system with a few malware samples. This feature helps to prevent the spreading of malware as soon as any damage is caused to the networks. An approach introduced in this paper takes advantage of One-shot/few-shot learning algorithms in solving the malware classification problems by using some well-known models such as Matching Networks, Prototypical Networks. To demonstrate an efficiency of the approach, we run the experiments on the two malware datasets (namely, MalImg and Microsoft Malware Classification Challenge), and both experiments all give us very high accuracies. We confirm that if applying models correctly from the machine learning area could bring excellent performance compared to the other traditional methods, open a new area of malware research.
In this work, we applied a deep Convolutional Neural Network (CNN) with Xception model to perform malware image classification. The Xception model is a recently developed special CNN architecture that is more powerful with less over- fitting problems than the current popular CNN models such as VGG16. However only a few use cases of the Xception model can be found in literature, and it has never been used to solve the malware classification problem. The performance of our approach was compared with other methods including KNN, SVM, VGG16 etc. The experiments on two datasets (Malimg and Microsoft Malware Dataset) demonstrated that the Xception model can achieve the highest training accuracy than all other approaches including the champion approach, and highest validation accuracy than all other approaches including VGG16 model which are using image-based malware classification (except the champion solution as this information was not provided). Additionally, we proposed a novel ensemble model to combine the predictions from .bytes files and .asm files, showing that a lower logloss can be achieved. Although the champion on the Microsoft Malware Dataset achieved a bit lower logloss, our approach does not require any features engineering, making it more effective to adapt to any future evolution in malware, and very much less time consuming than the champion's solution.
Android malware family classification is an advanced task in Android malware analysis, detection and forensics. Existing methods and models have achieved a certain success for Android malware detection, but the accuracy and the efficiency are still not up to the expectation, especially in the context of multiple class classification with imbalanced training data. To address those challenges, we propose an Android malware family classification model by analyzing the code's specific semantic information based on sensitive opcode sequence. In this work, we construct a sensitive semantic feature-sensitive opcode sequence using opcodes, sensitive APIs, STRs and actions, and propose to analyze the code's specific semantic information, generate a semantic related vector for Android malware family classification based on this feature. Besides, aiming at the families with minority, we adopt an oversampling technique based on the sensitive opcode sequence. Finally, we evaluate our method on Drebin dataset, and select the top 40 malware families for experiments. The experimental results show that the Total Accuracy and Average AUC (Area Under Curve, AUC) reach 99.50% and 98.86% with 45. 17s per Android malware, and even if the number of malware families increases, these results remain good.
In view of the problem that the intrusion detection method based on One-Class Support Vector Machine (OCSVM) could not detect the outliers within the industrial data, which results in the decision function deviating from the training sample, an anomaly intrusion detection algorithm based on Robust Incremental Principal Component Analysis (RIPCA) -OCSVM is proposed in this paper. The method uses RIPCA algorithm to remove outliers in industrial data sets and realize dimensionality reduction. In combination with the advantages of OCSVM on the single classification problem, an anomaly detection model is established, and the Improved Particle Swarm Optimization (IPSO) is used for model parameter optimization. The simulation results show that the method can efficiently and accurately identify attacks or abnormal behaviors while meeting the real-time requirements of the industrial control system (ICS).
With the deep integration of industrial control systems and Internet technologies, how to effectively detect whether industrial control systems are threatened by intrusion is a difficult problem in industrial security research. Aiming at the difficulty of high dimensionality and non-linearity of industrial control system network data, the stacked auto-encoder is used to extract the network data features, and the multi-classification support vector machine is used for classification. The research results show that the accuracy of the intrusion detection model reaches 95.8%.
Deep machine learning techniques have shown promising results in network traffic classification, however, the robustness of these techniques under adversarial threats is still in question. Deep machine learning models are found vulnerable to small carefully crafted adversarial perturbations posing a major question on the performance of deep machine learning techniques. In this paper, we propose a black-box adversarial attack on network traffic classification. The proposed attack successfully evades deep machine learning-based classifiers which highlights the potential security threat of using deep machine learning techniques to realize autonomous networks.
The anonymity and decentralization of Bitcoin make it widely accepted in illegal transactions, such as money laundering, drug and weapon trafficking, gambling, to name a few, which has already caused significant security risk all around the world. The obvious de-anonymity approach that matches transaction addresses and users is not possible in practice due to limited annotated data set. In this paper, we divide addresses into four types, exchange, gambling, service, and general, and propose targeted addresses identification algorithms with high fault tolerance which may be employed in a wide range of applications. We use network representation learning to extract features and train imbalanced multi-classifiers. Experimental results validated the effectiveness of the proposed method.
Severe class imbalance between the majority and minority classes in large datasets can prejudice Machine Learning classifiers toward the majority class. Our work uniquely consolidates two case studies, each utilizing three learners implemented within an Apache Spark framework, six sampling methods, and five sampling distribution ratios to analyze the effect of severe class imbalance on big data analytics. We use three performance metrics to evaluate this study: Area Under the Receiver Operating Characteristic Curve, Area Under the Precision-Recall Curve, and Geometric Mean. In the first case study, models were trained on one dataset (POST) and tested on another (SlowlorisBig). In the second case study, the training and testing dataset roles were switched. Our comparison of performance metrics shows that Area Under the Precision-Recall Curve and Geometric Mean are sensitive to changes in the sampling distribution ratio, whereas Area Under the Receiver Operating Characteristic Curve is relatively unaffected. In addition, we demonstrate that when comparing sampling methods, borderline-SMOTE2 outperforms the other methods in the first case study, and Random Undersampling is the top performer in the second case study.
Intentionally deceptive content presented under the guise of legitimate journalism is a worldwide information accuracy and integrity problem that affects opinion forming, decision making, and voting patterns. Most so-called `fake news' is initially distributed over social media conduits like Facebook and Twitter and later finds its way onto mainstream media platforms such as traditional television and radio news. The fake news stories that are initially seeded over social media platforms share key linguistic characteristics such as making excessive use of unsubstantiated hyperbole and non-attributed quoted content. In this paper, the results of a fake news identification study that documents the performance of a fake news classifier are presented. The Textblob, Natural Language, and SciPy Toolkits were used to develop a novel fake news detector that uses quoted attribution in a Bayesian machine learning system as a key feature to estimate the likelihood that a news article is fake. The resultant process precision is 63.333% effective at assessing the likelihood that an article with quotes is fake. This process is called influence mining and this novel technique is presented as a method that can be used to enable fake news and even propaganda detection. In this paper, the research process, technical analysis, technical linguistics work, and classifier performance and results are presented. The paper concludes with a discussion of how the current system will evolve into an influence mining system.