Biblio
Adversarial models are well-established for cryptographic protocols, but distributed real-time protocols have requirements that these abstractions are not intended to cover. The IEEE/IEC 61850 standard for communication networks and systems for power utility automation in particular not only requires distributed processing, but in case of the generic object oriented substation events and sampled value (GOOSE/SV) protocols also hard real-time characteristics. This motivates the desire to include both quality of service (QoS) and explicit network topology in an adversary model based on a π-calculus process algebraic formalism based on earlier work. This allows reasoning over process states, placement of adversarial entities and communication behaviour. We demonstrate the use of our model for the simple case of a replay attack against the publish/subscribe GOOSE/SV subprotocol, showing bounds for non-detectability of such an attack.
IEC 61850 is an international standard that is widely used in substation automation systems (SAS) in smart grids. During its development, security was not considered thus leaving SAS vulnerable to attacks from adversaries. IEC 62351 was developed to provide security recommendations for SAS against (distributed) denial-of-service, replay, alteration, spoofing and detection of devices attacks. However, real-time communications, which require protocols such as Generic Object-Oriented Substation Event (GOOSE) to function efficiently, cannot implement these recommendations due to latency constraints. There has been researching that sought to improve the security of GOOSE messages, however, some cannot be practically implemented due to hardware requirements while others are theoretical, even though latency requirements were met. This research investigates the possibility of encrypting GOOSE messages with One- Time Pads (OTP), leveraging the fact that encryption/decryption processes require the random generation of OTPs and modulo addition (XOR), which could be a realistic approach to secure GOOSE while maintaining latency requirements. Results show that GOOSE messages can be encrypted with some future work required.
In order to improve the information security level of intelligent substation, this paper proposes an intelligent substation information security assessment tool through the research and analysis of intelligent substation information security risk and information security assessment method, and proves that the tool can effectively detect it. It is of great significance to carry out research on industrial control systems, especially intelligent substation information security.
Cyber intrusions to substations of a power grid are a source of vulnerability since most substations are unmanned and with limited protection of the physical security. In the worst case, simultaneous intrusions into multiple substations can lead to severe cascading events, causing catastrophic power outages. In this paper, an integrated Anomaly Detection System (ADS) is proposed which contains host- and network-based anomaly detection systems for the substations, and simultaneous anomaly detection for multiple substations. Potential scenarios of simultaneous intrusions into the substations have been simulated using a substation automation testbed. The host-based anomaly detection considers temporal anomalies in the substation facilities, e.g., user-interfaces, Intelligent Electronic Devices (IEDs) and circuit breakers. The malicious behaviors of substation automation based on multicast messages, e.g., Generic Object Oriented Substation Event (GOOSE) and Sampled Measured Value (SMV), are incorporated in the proposed network-based anomaly detection. The proposed simultaneous intrusion detection method is able to identify the same type of attacks at multiple substations and their locations. The result is a new integrated tool for detection and mitigation of cyber intrusions at a single substation or multiple substations of a power grid.
This paper proposes a new network-based cyber intrusion detection system (NIDS) using multicast messages in substation automation systems (SASs). The proposed network-based intrusion detection system monitors anomalies and malicious activities of multicast messages based on IEC 61850, e.g., Generic Object Oriented Substation Event (GOOSE) and Sampled Value (SV). NIDS detects anomalies and intrusions that violate predefined security rules using a specification-based algorithm. The performance test has been conducted for different cyber intrusion scenarios (e.g., packet modification, replay and denial-of-service attacks) using a cyber security testbed. The IEEE 39-bus system model has been used for testing of the proposed intrusion detection method for simultaneous cyber attacks. The false negative ratio (FNR) is the number of misclassified abnormal packets divided by the total number of abnormal packets. The results demonstrate that the proposed NIDS achieves a low fault negative rate.
This paper proposes a methodology to assess cyber-related risks and to identify critical assets both at power grid and substation levels. The methodology is based on a two-pass engine model. The first pass engine is developed to identify the most critical substation(s) in a power grid. A mixture of Analytical hierarchy process (AHP) and (N-1) contingent analysis is used to calculate risks. The second pass engine is developed to identify risky assets within a substation and improve the vulnerability of a substation against the intrusion and malicious acts of cyber hackers. The risk methodology uniquely combines asset reliability, vulnerability and costs of attack into a risk index. A methodology is also presented to improve the overall security of a substation by optimally placing security agent(s) on the automation system.
A system implementing real-time situational awareness through discovery, prevention, detection, response, audit, and management capabilities is seen as central to facilitating the protection of critical infrastructure systems. The effectiveness of providing such awareness technologies for electrical distribution companies is being evaluated in a series of field trials: (i) Substation Intrusion Detection / Prevention System (IDPS) and (ii) Security Information and Event Management (SIEM) System. These trials will help create a realistic case study on the effectiveness of such technologies with the view of forming a framework for critical infrastructure cyber security defense systems of the future.
This paper proposes a methodology to assess cyber-related risks and to identify critical assets both at power grid and substation levels. The methodology is based on a two-pass engine model. The first pass engine is developed to identify the most critical substation(s) in a power grid. A mixture of Analytical hierarchy process (AHP) and (N-1) contingent analysis is used to calculate risks. The second pass engine is developed to identify risky assets within a substation and improve the vulnerability of a substation against the intrusion and malicious acts of cyber hackers. The risk methodology uniquely combines asset reliability, vulnerability and costs of attack into a risk index. A methodology is also presented to improve the overall security of a substation by optimally placing security agent(s) on the automation system.
This paper proposes a methodology to assess cyber-related risks and to identify critical assets both at power grid and substation levels. The methodology is based on a two-pass engine model. The first pass engine is developed to identify the most critical substation(s) in a power grid. A mixture of Analytical hierarchy process (AHP) and (N-1) contingent analysis is used to calculate risks. The second pass engine is developed to identify risky assets within a substation and improve the vulnerability of a substation against the intrusion and malicious acts of cyber hackers. The risk methodology uniquely combines asset reliability, vulnerability and costs of attack into a risk index. A methodology is also presented to improve the overall security of a substation by optimally placing security agent(s) on the automation system.
Cyber intrusions to substations of a power grid are a source of vulnerability since most substations are unmanned and with limited protection of the physical security. In the worst case, simultaneous intrusions into multiple substations can lead to severe cascading events, causing catastrophic power outages. In this paper, an integrated Anomaly Detection System (ADS) is proposed which contains host- and network-based anomaly detection systems for the substations, and simultaneous anomaly detection for multiple substations. Potential scenarios of simultaneous intrusions into the substations have been simulated using a substation automation testbed. The host-based anomaly detection considers temporal anomalies in the substation facilities, e.g., user-interfaces, Intelligent Electronic Devices (IEDs) and circuit breakers. The malicious behaviors of substation automation based on multicast messages, e.g., Generic Object Oriented Substation Event (GOOSE) and Sampled Measured Value (SMV), are incorporated in the proposed network-based anomaly detection. The proposed simultaneous intrusion detection method is able to identify the same type of attacks at multiple substations and their locations. The result is a new integrated tool for detection and mitigation of cyber intrusions at a single substation or multiple substations of a power grid.