Visible to the public Biblio

Filters: Keyword is power system stability  [Clear All Filters]
2023-08-23
Chen, Zongyao, Bu, Xuhui, Guo, Jinli.  2022.  Model-free Adaptive Sliding Mode Control for Interconnected Power Systems under DoS Attacks. 2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS). :487—492.
In this paper, a new model-free adaptive sliding mode load frequency control (LFC) scheme is designed for inter-connected power systems, where modeling is difficult and suffers from load change disturbances and denial of service (DoS) attacks. The proposed algorithm only uses real-time I/O data of the power system to achieve a high control performance. Firstly, the dynamic linearization strategy is used to build a data-based model of the power system, and intermittent DoS attacks are modeled by limiting their duration and frequency. Secondly, the model-free adaptive sliding mode control (MFASMC) scheme is designed based on optimization theory and sliding mode reaching law, and its stability is analyzed. Finally, the three-area interconnected power system was selected to test the presented MFASMC scheme. Simulation data shows the effectiveness of the LFC algorithm in this paper.
2023-07-28
Rajderkar, Vedashree.P., Chandrakar, Vinod K.  2022.  Enhancement of Power System Security by Fuzzy based Unified Power Flow Controller. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1—4.
The paper presents the design of fuzzy logic controller based unified power flow controller (UPFC) to improve power system security performance during steady state as well as fault conditions. Fuzzy interference has been design with two inputs Vref and Vm for the shunt voltage source Converter and two inputs for Series Id, Idref, Iq, Iqref at the series voltage source converter location. The coordination of shunt and series VSC has been achieved by using fuzzy logic controller (FLC). The comparative performance of PI based UPFC and fuzzy based UPFC under abnormal condition has been validated in MATLB domain. The combination of fuzzy with a UPFC is tested on multi machine system in MATLAB domain. The results shows that the power system security enhancement as well as oscillations damping.
2023-07-21
Su, Xiangjing, Zhu, Zheng, Xiao, Shiqu, Fu, Yang, Wu, Yi.  2022.  Deep Neural Network Based Efficient Data Fusion Model for False Data Detection in Power System. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2). :1462—1466.
Cyberattack on power system brings new challenges on the development of modern power system. Hackers may implement false data injection attack (FDIA) to cause unstable operating conditions of the power system. However, data from different power internet of things usually contains a lot of redundancy, making it difficult for current efficient discriminant model to precisely identify FDIA. To address this problem, we propose a deep learning network-based data fusion model to handle features from measurement data in power system. Proposed model includes a data enrichment module and a data fusion module. We firstly employ feature engineering technique to enrich features from power system operation in time dimension. Subsequently, a long short-term memory based autoencoder (LSTM-AE) is designed to efficiently avoid feature space explosion problem during data enriching process. Extensive experiments are performed on several classical attack detection models over the load data set from IEEE 14-bus system and simulation results demonstrate that fused data from proposed model shows higher detection accuracy with respect to the raw data.
2023-07-19
Vekić, Marko, Isakov, Ivana, Rapaić, Milan, Grabić, Stevan, Todorović, Ivan, Porobić, Vlado.  2022.  Decentralized microgrid control "beyond droop". 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). :1—5.
Various approaches of microgrid operation have been proposed, albeit with noticeable issues such as power-sharing, control of frequency and voltage excursions, applicability on different grids, etc. This paper proposes a goal function-based, decentralized control that addresses the mentioned problems and secures the microgrid stability by constraining the frequency and node deviations across the grid while simultaneously supporting the desired active power exchange between prosumer nodes. The control algorithm is independent of network topology and enables arbitrary node connection, i.e. seamless microgrid expandability. To confirm the effectiveness of the proposed control strategy, simulation results are presented and discussed.
2023-07-11
Tudose, Andrei, Micu, Robert, Picioroaga, Irina, Sidea, Dorian, Mandis, Alexandru, Bulac, Constantin.  2022.  Power Systems Security Assessment Based on Artificial Neural Networks. 2022 International Conference and Exposition on Electrical And Power Engineering (EPE). :535—539.
Power system security assessment is a major issue among the fundamental functions needed for the proper power systems operation. In order to perform the security evaluation, the contingency analysis is a key component. However, the dynamic evolution of power systems during the past decades led to the necessity of novel techniques to facilitate this task. In this paper, power systems security is defined based on the N-l contingency analysis. An artificial neural network approach is proposed to ensure the fast evaluation of power systems security. In this regard, the IEEE 14 bus transmission system is used to verify the performance of the proposed model, the results showing high efficiency subject to multiple evaluation metrics.
Yarlagadda, Venu, Garikapati, Annapurna Karthika, Gadupudi, Lakshminarayana, Kapoor, Rashmi, Veeresham, K..  2022.  Comparative Analysis of STATCOM and SVC on Power System Dynamic Response and Stability Margins with time and frequency responses using Modelling. 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). :1—8.
To ensure dynamic and transient angle and load stability in order to maintain the power system security is a major task of the power Engineer. FACTS Controllers are most effective devices to ensure system security by enhancing the stability margins with reactive power support all over the power system network. The major shunt compensation devices of FACTS are SVC and STATCOM. This article dispenses the modelling and simulation of both the shunt devices viz. Oneis the Static Synchronous Compensator (STATCOM) and the other is Static Var Compensator (SVC). The small signal models of these devices have been derived from the first principles and obtained the transfer function models of weak and strong power systems. The weak power system has the Short Circuit Ratio (SCR) is about less than 3 and that of the strong power system has the SCR of more than 5. The performance of the both weak and strong power systems has been evaluated with time and frequency responses. The dynamic response is obtained with the exact models for both weak and strong systems, subsequently the root locus plots as well as bode plots have been obtained with MATLAB Programs and evaluated the performance of these devices and comparison is made. The Stability margins of both the systems with SVC and STATCOM have been obtained from the bode plots. The dynamic behaviour of the both kinds of power systems have been assessed with time responses of SVC and STATCOM models. All of these results viz. dynamic response, root locus and bode plots proves the superiority of the STATCOM over SVC with indices, viz. peak overshoot, settling time, gain margin and phase margins. The dynamic, steady state performance indices obtained from time response and bode plots proves the superior performance of STATCOM.
Ma, Rui, Zhan, Meng.  2022.  Transient Stability Assessment and Dynamic Security Region in Power Electronics Dominated Power Systems. 2022 IEEE International Conference on Power Systems Technology (POWERCON). :1—6.
Transient stability accidents induced by converter-based resources have been emerging frequently around the world. In this paper, the transient stability of the grid-tied voltage source converter (VSC) system is studied through estimating the basin of attraction (BOA) based on the hyperplane or hypersurface method. Meanwhile, fault critical clearing times are estimated, based on the approximated BOA and numerical fault trajectory. Further, the dynamic security region (DSR), an important index in traditional power systems, is extended to power-electronics-dominated power systems in this paper. The DSR of VSC is defined in the space composed of active current references. Based on the estimated BOA, the single-VSC-infinite-bus system is taken as an example and its DSR is evaluated. Finally, all these analytical results are well verified by several numerical simulations in MATLAB/Simulink.
2023-06-09
Ali AL-Jumaili, Ahmed Hadi, Muniyandi, Ravie Chandren, Hasan, Mohammad Kamrul, Singh, Mandeep Jit, Siaw Paw, Johnny Koh.  2022.  Analytical Survey on the Security Framework of Cyber-Physical Systems for Smart Power System Networks. 2022 International Conference on Cyber Resilience (ICCR). :1—8.
Cyber-Physical Power System (CPPS) is one of the most critical infrastructure systems due to deep integration between power grids and communication networks. In the power system, cascading failure is spreading more readily in CPPS, even leading to blackouts as well as there are new difficulties with the power system security simulation and faults brought by physical harm or network intrusions. The current study summarized the cross- integration of several fields such as computer and cyberspace security in terms of the robustness of Cyber-Physical Systems, viewed as Interconnected and secure network systems. Therefore, the security events that significantly influenced the power system were evaluated in this study, besides the challenges and future directions of power system security simulation technologies were investigated for posing both challenges and opportunities for simulation techniques of power system security like building a new power system to accelerate the transformation of the existing energy system to a clean, low-carbon, safe, and efficient energy system which is used to assure power system stability through fusion systems that combine the cyber-physical to integrate the battery power station, power generation and renewable energy resources through the internet with the cyber system that contains Smart energy system control and attacks.
2023-05-19
G, Amritha, Kh, Vishakh, C, Jishnu Shankar V, Nair, Manjula G.  2022.  Autoencoder Based FDI Attack Detection Scheme For Smart Grid Stability. 2022 IEEE 19th India Council International Conference (INDICON). :1—5.
One of the major concerns in the real-time monitoring systems in a smart grid is the Cyber security threat. The false data injection attack is emerging as a major form of attack in Cyber-Physical Systems (CPS). A False data Injection Attack (FDIA) can lead to severe issues like insufficient generation, physical damage to the grid, power flow imbalance as well as economical loss. The recent advancements in machine learning algorithms have helped solve the drawbacks of using classical detection techniques for such attacks. In this article, we propose to use Autoencoders (AE’s) as a novel Machine Learning approach to detect FDI attacks without any major modifications. The performance of the method is validated through the analysis of the simulation results. The algorithm achieves optimal accuracy owing to the unsupervised nature of the algorithm.
2023-05-12
Germanà, Roberto, Giuseppi, Alessandro, Pietrabissa, Antonio, Di Giorgio, Alessandro.  2022.  Optimal Energy Storage System Placement for Robust Stabilization of Power Systems Against Dynamic Load Altering Attacks. 2022 30th Mediterranean Conference on Control and Automation (MED). :821–828.
This paper presents a study on the "Dynamic Load Altering Attacks" (D-LAAs), their effects on the dynamics of a transmission network, and provides a robust control protection scheme, based on polytopic uncertainties, invariance theory, Lyapunov arguments and graph theory. The proposed algorithm returns an optimal Energy Storage Systems (ESSs) placement, that minimizes the number of ESSs placed in the network, together with the associated control law that can robustly stabilize against D-LAAs. The paper provides a contextualization of the problem and a modelling approach for power networks subject to D-LAAs, suitable for the designed robust control protection scheme. The paper also proposes a reference scenario for the study of the dynamics of the control actions and their effects in different cases. The approach is evaluated by numerical simulations on large networks.
ISSN: 2473-3504
Wang, Juan, Sun, Yuan, Liu, Dongyang, Li, Zhukun, Xu, GaoYang, Si, Qinghua.  2022.  Research on Locking Strategy of Large-Scale Security and Stability Control System under Abnormal State. 2022 7th International Conference on Power and Renewable Energy (ICPRE). :370–375.
With the high-speed development of UHV power grid, the characteristics of power grid changed significantly, which puts forward new requirements for the safe operation of power grid and depend on Security and Stability Control System (SSCS) greatly. Based on the practical cases, this paper analyzes the principle of the abnormal criteria of the SSCS and its influence on the strategy of the SSCS, points out the necessity of the research on the locking strategy of the SSCS under the abnormal state. Taking the large-scale SSCS for an example, this paper analysis different control strategies of the stations in the different layered, and puts forward effective solutions to adapt different system functions. It greatly improved the effectiveness and reliability of the strategy of SSCS, and ensure the integrity of the system function. Comparing the different schemes, the principles of making the lock-strategy are proposed. It has reference significance for the design, development and implementation of large-scale SSCS.
ISSN: 2768-0525
2023-03-17
Chen, Xinghua, Huang, Lixian, Zheng, Dan, Chen, Jinchang, Li, Xinchao.  2022.  Research and Application of Communication Security in Security and Stability Control System of Power Grid. 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). :1215–1221.
Plaintext transmission is the major way of communication in the existing security and stability control (SSC) system of power grid. Such type of communication is easy to be invaded, camouflaged and hijacked by a third party, leading to a serious threat to the safe and stable operation of power system. Focusing on the communication security in SSC system, the authors use asymmetric encryption algorithm to encrypt communication messages, to generate random numbers through random noise of electrical quantities, and then use them to generate key pairs needed for encryption, at the same time put forward a set of key management mechanism for engineering application. In addition, the field engineering test is performed to verify that the proposed encryption method and management mechanism can effectively improve the communication in SSC system while ensuring the high-speed and reliable communication.
Iswaran, Giritharan Vijay, Vakili, Ramin, Khorsand, Mojdeh.  2022.  Power System Resiliency Against Windstorms: A Systematic Framework Based on Dynamic and Steady-State Analysis. 2022 North American Power Symposium (NAPS). :1–6.
Power system robustness against high-impact low probability events is becoming a major concern. To depict distinct phases of a system response during these disturbances, an irregular polygon model is derived from the conventional trapezoid model and the model is analytically investigated for transmission system performance, based on which resiliency metrics are developed for the same. Furthermore, the system resiliency to windstorms is evaluated on the IEEE reliability test system (RTS) by performing steady-state and dynamic security assessment incorporating protection modelling and corrective action schemes using the Power System Simulator for Engineering (PSS®E) software. Based on the results of steady-state and dynamic analysis, modified resiliency metrics are quantified. Finally, this paper quantifies the interdependency of operational and infrastructure resiliency as they cannot be considered discrete characteristics of the system.
ISSN: 2833-003X
2023-02-17
Frauenschläger, Tobias, Mottok, Jürgen.  2022.  Security-Gateway for SCADA-Systems in Critical Infrastructures. 2022 International Conference on Applied Electronics (AE). :1–6.
Supervisory Control and Data Acquisition (SCADA) systems are used to control and monitor components within the energy grid, playing a significant role in the stability of the system. As a part of critical infrastructures, components in these systems have to fulfill a variety of different requirements regarding their dependability and must also undergo strict audit procedures in order to comply with all relevant standards. This results in a slow adoption of new functionalities. Due to the emerged threat of cyberattacks against critical infrastructures, extensive security measures are needed within these systems to protect them from adversaries and ensure a stable operation. In this work, a solution is proposed to integrate extensive security measures into current systems. By deploying additional security-gateways into the communication path between two nodes, security features can be integrated transparently for the existing components. The developed security-gateway is compliant to all regulatory requirements and features an internal architecture based on the separation-of-concerns principle to increase its security and longevity. The viability of the proposed solution has been verified in different scenarios, consisting of realistic field tests, security penetration tests and various performance evaluations.
ISSN: 1805-9597
2023-02-03
Liu, Weidong, Li, Lei, Li, Xiaohui.  2022.  Power System Forced Oscillation Caused by Malicious Mode Attack via Coordinated Charging. 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :1838–1844.
For the huge charging demands of numerous electric vehicles (EVs), coordinated charging is increasing in power grid. However, since connected with public networks, the coordinated charging control system is in a low-level cyber security and greatly vulnerable to malicious attacks. This paper investigates the malicious mode attack (MMA), which is a new cyber-attack pattern that simultaneously attacks massive EV charging piles to generate continuous sinusoidal power disturbance with the same frequency as the poorly-damped wide-area electromechanical mode. Thereby, high amplitude forced oscillations are stimulated by MMA, which seriously threats the stability of power systems and the power supply of charging stations. The potential threat of MMA is clarified by investigating the vulnerability of the IoT-based coordinated charging load control system, and an MMA process like Mirai is pointed out as an example. An MMA model is established for impact analysis. A hardware test platform is built for the verification of the MMA model. Test result verified the existence of MMA and the accuracy of the MMA model.
2023-02-02
Zhang, Yanjun, Zhao, Peng, Han, Ziyang, Yang, Luyu, Chen, Junrui.  2022.  Low Frequency Oscillation Mode Identification Algorithm Based on VMD Noise Reduction and Stochastic Subspace Method. 2022 Power System and Green Energy Conference (PSGEC). :848–852.
Low-frequency oscillation (LFO) is a security and stability issue that the power system focuses on, measurement data play an important role in online monitoring and analysis of low-frequency oscillation parameters. Aiming at the problem that the measurement data containing noise affects the accuracy of modal parameter identification, a VMD-SSI modal identification algorithm is proposed, which uses the variational modal decomposition algorithm (VMD) for noise reduction combined with the stochastic subspace algorithm for identification. The VMD algorithm decomposes and reconstructs the initial signal with certain noise, and filters out the noise signal. Then, the optimized signal is input into stochastic subspace identification algorithm(SSI), the modal parameters is obtained. Simulation of a three-machine ninenode system verifies that the VMD-SSI mode identification algorithm has good anti-noise performance.
Tian, Yingchi, Xiao, Shiwu.  2022.  Parameter sensitivity analysis and adjustment for subsynchronous oscillation stability of doubly-fed wind farms with static var generator. 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP). :215–219.
The interaction between the transmission system of doubly-fed wind farms and the power grid and the stability of the system have always been widely concerned at home and abroad. In recent years, wind farms have basically installed static var generator (SVG) to improve voltage stability. Therefore, this paper mainly studies the subsynchronous oscillation (SSO) problem in the grid-connected grid-connected doubly-fed wind farm with static var generators. Firstly based on impedance analysis, the sequence impedance model of the doubly-fed induction generator and the static var generator is established by the method. Then, based on the stability criterion of Bode plot and time domain simulation, the influence of the access of the static var generator on the SSO of the system is analyzed. Finally, the sensitivity analysis of the main parameters of the doubly-fed induction generator and the static var generator is carried out. The results show that the highest sensitivity is the proportional gain parameter of the doubly-fed induction generator current inner loop, and its value should be reduced to reduce the risk of SSO of the system.
2023-01-20
Abdelrahman, Mahmoud S., Kassem, A., Saad, Ahmed A., Mohammed, Osama A..  2022.  Real-Time Wide Area Event Identification and Analysis in Power Grid Based on EWAMS. 2022 IEEE Industry Applications Society Annual Meeting (IAS). :1–13.
Event detection and classification are crucial to power system stability. The Wide Area Measurement System (WAMS) technology helps in enhancing wide area situational awareness by providing useful synchronized information to the grid control center in order to accurately identify various power system events. This paper demonstrates the viability of using EWAMS (Egyptian Wide Area Measurement System) data as one of the evolving technologies of smart grid to identify extreme events within the Egyptian power grid. The proposed scheme is based on online synchronized measurements of wide-area monitoring devices known as Frequency Disturbance Recorders (FDRs) deployed at selected substations within the grid. The FDR measures the voltage, voltage angle, and frequency at the substation and streams the processed results to the Helwan University Host Server (HUHS). Each FDR is associated with a timestamp reference to the Global Positioning System (GPS) base. An EWAMS-based frequency disturbance detection algorithm based on the rate of frequency deviation is developed to identify varies types of events such as generator trip and load shedding. Based on proper thresholding on the frequency and rate of change of frequency of the Egyptian grid, different types of events have been captured in many locations during the supervision and monitoring the operation of the grid. EWAMS historical data is used to analyze a wide range of data pre-event, during and post-event for future enhancement of situational awareness as well as decision making.
2022-11-18
Kar, Jishnudeep, Chakrabortty, Aranya.  2021.  LSTM based Denial-of-Service Resiliency for Wide-Area Control of Power Systems. 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). :1–5.
Denial-of-Service (DoS) attacks in wide-area control loops of electric power systems can cause temporary halting of information flow between the generators, leading to closed-loop instability. One way to counteract this issue would be to recreate the missing state information at the impacted generators by using the model of the entire system. However, that not only violates privacy but is also impractical from a scalability point of view. In this paper, we propose to resolve this issue by using a model-free technique employing neural networks. Specifically, a long short-term memory network (LSTM) is used. Once an attack is detected and localized, the LSTM at the impacted generator(s) predicts the magnitudes of the corresponding missing states in a completely decentralized fashion using offline training and online data updates. These predicted states are thereafter used in conjunction with the healthy states to sustain the wide-area feedback until the attack is cleared. The approach is validated using the IEEE 68-bus, 16-machine power system.
2022-08-26
Bento, Murilo E. C., Ferreira, Daniela A. G., Grilo-Pavani, Ahda P., Ramos, Rodrigo A..  2021.  Combining Strategies to Compute the Loadability Margin in Dynamic Security Assessment of Power Systems. 2021 IEEE Power & Energy Society General Meeting (PESGM). :1–5.
The load margin due to voltage instability and small-signal instability can be a valuable measure for the operator of the power system to ensure a continuous and safe supply of electricity. However, if this load margin was calculated without considering system operating requirements, then this margin may not be adequate. This article proposes an algorithm capable of providing the power system load margin considering the requirements of voltage stability, small-signal stability, and operational requirements, as limits of reactive power generation of synchronous generators in dynamic security assessment. Case studies were conducted in the 107-bus reduced order Brazilian system considering a list of contingencies and directions of load growth.
Spyros, Chatzivasileiadis.  2020.  From Decision Trees and Neural Networks to MILP: Power System Optimization Considering Dynamic Stability Constraints. 2020 European Control Conference (ECC). :594–594.
This work introduces methods that unlock a series of applications for decision trees and neural networks in power system optimization. Capturing constraints that were impossible to capture before in a scalable way, we use decision trees (or neural networks) to extract an accurate representation of the non-convex feasible region which is characterized by both algebraic and differential equations. Applying an exact transformation, we convert the information encoded in the decision trees and the neural networks to linear decision rules that we incorporate as conditional constraints in an optimization problem (MILP or MISOCP). Our approach introduces a framework to unify security considerations with electricity market operations, capturing not only steady-state but also dynamic stability constraints in power system optimization, and has the potential to eliminate redispatching costs, leading to savings of millions of euros per year.
U, Shriya, S, Veena H.  2021.  Increasing Grid Power Transmission Using PV-STATCOM. 2021 6th International Conference for Convergence in Technology (I2CT). :1–5.
Renewable energy resource plays an important role due to increasing energy claim. Power generation by PV technology is one of the fastest growing renewable energy sources due to its clean, economical and sustainable property. Grid integrated PV systems plays an important role in power generation sector. As the energy demand is increasing day by day, the power transfer capability of transmission line is increasing which leads various problems like stability, increase in fault current, congestion etc. To overcome the problem, we can use either FACTS device or battery storage or construct additional lines which is cost effective. This paper deals with grid connected PV system, which functions as PV-STATCOM. Voltage and damping control are used to elevate the power transfer capacity and to achieve regulated voltage within the limits at the point of common coupling (PCC). The studies are performed on SMIB and the simulation is carried out in MATLAB/SIMULINK environment.
2022-08-12
Siu, Jun Yen, Kumar, Nishant, Panda, Sanjib Kumar.  2021.  Attack Detection and Mitigation using Multi-Agent System in the Deregulated Market. 2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia). :821—826.
Over the past decade, cyber-attack events on the electricity grid are on the rise and have proven to result in severe consequences in grid operation. These attacks are becoming more intelligent and can bypass existing protection protocols, resulting in economic losses due to system operating in a falsified and non-optimal condition over a prolonged period. Hence, it is crucial to develop defense tools to detect and mitigate the attack to minimize the cost of malicious operation. This paper aims to develop a novel command verification strategy to detect and mitigate False Data Injection Attacks (FDIAs) targeting the system centralized Economic Dispatch (ED) control signals. Firstly, we describe the ED problem in Singapore's deregulated market. We then perform a risk assessment and formulate two FDIA vectors - Man in the Middle (MITM) and Stealth attack on the ED control process. Subsequently, we propose a novel verification technique based on Multi-Agent System (MAS) to validate the control commands. This algorithm has been tested on the IEEE 6-Bus 3-generator test system, and experimental results verified that the proposed algorithm can detect and mitigate the FDIA vectors.
Liyanarachchi, Lakna, Hosseinzadeh, Nasser, Mahmud, Apel, Gargoom, Ameen, Farahani, Ehsan M..  2020.  Contingency Ranking Selection using Static Security Performance Indices in Future Grids. 2020 Australasian Universities Power Engineering Conference (AUPEC). :1–6.

Power system security assessment and enhancement in grids with high penetration of renewables is critical for pragmatic power system planning. Static Security Assessment (SSA) is a fast response tool to assess system stability margins following considerable contingencies assuming post fault system reaches a steady state. This paper presents a contingency ranking methodology using static security indices to rank credible contingencies considering severity. A Modified IEEE 9 bus system integrating renewables was used to test the approach. The static security indices used independently provides accurate results in identifying severe contingencies but further assessment is needed to provide an accurate picture of static security assessment in an increased time frame of the steady state. The indices driven for static security assessment could accurately capture and rank contingencies with renewable sources but due to intermittency of the renewable source various contingency ranking lists are generated. This implies that using indices in future grids without consideration on intermittent nature of renewables will make it difficult for the grid operator to identify severe contingencies and assist the power system operator to make operational decisions. This makes it necessary to integrate the behaviour of renewables in security indices for practical application in real time security assessment.

2022-07-29
Zhou, Runfu, Peng, Minfang, Gao, Xingle.  2021.  Vulnerability Assessment of Power Cyber-Physical System Considering Nodes Load Capacity. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :1438—1441.
The power cyber-physical system combines the cyber network with the traditional electrical power network, which can monitor and control the operation of the power grid stably and efficiently. Since the system's structure and function is complicated and large, it becomes fragile as a result. Therefore, establishing a reasonable and effective CPS model and discussing its vulnerability performance under external attacks is essential and vital for power grid operation. This paper uses the theory of complex networks to establish a independent system model by IEEE-118-node power network and 200-node scale-free information network, introducing information index to identify and sort important nodes in the network, and then cascade model of the power cyber-physical system based on the node load capacity is constructed and the vulnerability assessment analysis is carried out. The simulation shows that the disintegration speed of the system structure under deliberate attacks is faster than random attacks; And increasing the node threshold can effectively inhibit the propagation of failure.