Visible to the public Biblio

Filters: Keyword is power system stability  [Clear All Filters]
2018-04-04
Lan, T., Wang, W., Huang, G. M..  2017.  False data injection attack in smart grid topology control: Vulnerability and countermeasure. 2017 IEEE Power Energy Society General Meeting. :1–5.
Cyber security is a crucial factor for modern power system as many applications are heavily relied on the result of state estimation. Therefore, it is necessary to assess and enhance cyber security for new applications in power system. As an emerging technology, smart grid topology control has been investigated in stability and reliability perspectives while the associated cyber security issue is not studied before. In successful false data injection attack (FDIA) against AC state estimation, attacker could alter online stability check result by decreasing real power flow measurement on the switching target line to undermine physical system stability in topology control. The physical impact of FDIA on system control operation and stability are illustrated. The vulnerability is discussed on perfect FDIA and imperfect FDIA against residue based bad data detection and corresponding countermeasure is proposed to secure critical substations in the system. The vulnerability and countermeasure are demonstrated on IEEE 24 bus reliability test system (RTS).
2018-04-02
Wang, Y., Pulgar-Painemal, H., Sun, K..  2017.  Online Analysis of Voltage Security in a Microgrid Using Convolutional Neural Networks. 2017 IEEE Power Energy Society General Meeting. :1–5.

Although connecting a microgrid to modern power systems can alleviate issues arising from a large penetration of distributed generation, it can also cause severe voltage instability problems. This paper presents an online method to analyze voltage security in a microgrid using convolutional neural networks. To transform the traditional voltage stability problem into a classification problem, three steps are considered: 1) creating data sets using offline simulation results; 2) training the model with dimensional reduction and convolutional neural networks; 3) testing the online data set and evaluating performance. A case study in the modified IEEE 14-bus system shows the accuracy of the proposed analysis method increases by 6% compared to back-propagation neural network and has better performance than decision tree and support vector machine. The proposed algorithm has great potential in future applications.

2018-03-05
Liu, R., Verbi\v c, G., Xu, Y..  2017.  A New Reliability-Driven Intelligent System for Power System Dynamic Security Assessment. 2017 Australasian Universities Power Engineering Conference (AUPEC). :1–6.

Dynamic security assessment provides system operators with vital information for possible preventive or emergency control to prevent security problems. In some cases, power system topology change deteriorates intelligent system-based online stability assessment performance. In this paper, we propose a new online assessment scheme to improve classification performance reliability of dynamic transient stability assessment. In the new scheme, we use an intelligent system consisting an ensemble of neural networks based on extreme learning machine. A new feature selection algorithm combining filter type method RRelief-F and wrapper type method Sequential Floating Forward Selection is proposed. Boosting learning algorithm is used in intelligent system training process which leads to higher classification accuracy. Moreover, we propose a new classification rule using weighted outputs of predictors in the ensemble helps to achieve 100% transient stability prediction in our case study.

Liu, R., Verbi\v c, G., Xu, Y..  2017.  A New Reliability-Driven Intelligent System for Power System Dynamic Security Assessment. 2017 Australasian Universities Power Engineering Conference (AUPEC). :1–6.

Dynamic security assessment provides system operators with vital information for possible preventive or emergency control to prevent security problems. In some cases, power system topology change deteriorates intelligent system-based online stability assessment performance. In this paper, we propose a new online assessment scheme to improve classification performance reliability of dynamic transient stability assessment. In the new scheme, we use an intelligent system consisting an ensemble of neural networks based on extreme learning machine. A new feature selection algorithm combining filter type method RRelief-F and wrapper type method Sequential Floating Forward Selection is proposed. Boosting learning algorithm is used in intelligent system training process which leads to higher classification accuracy. Moreover, we propose a new classification rule using weighted outputs of predictors in the ensemble helps to achieve 100% transient stability prediction in our case study.

2018-02-27
Guan, L., Zhang, J., Zhong, L., Li, X., Xu, Y..  2017.  Enhancing Security and Resilience of Bulk Power Systems via Multisource Big Data Learning. 2017 IEEE Power Energy Society General Meeting. :1–5.

In this paper, an advanced security and stability defense framework that utilizes multisource power system data to enhance the power system security and resilience is proposed. The framework consists of early warning, preventive control, on-line state awareness and emergency control, requires in-depth collaboration between power engineering and data science. To realize this framework in practice, a cross-disciplinary research topic — the big data analytics for power system security and resilience enhancement, which consists of data converting, data cleaning and integration, automatic labelling and learning model establishing, power system parameter identification and feature extraction using developed big data learning techniques, and security analysis and control based on the extracted knowledge — is deeply investigated. Domain considerations of power systems and specific data science technologies are studied. The future technique roadmap for emerging problems is proposed.

Ayar, M., Trevizan, R. D., Bretas, A. S., Latchman, H., Obuz, S..  2017.  A Robust Decentralized Control Framework for Enhancing Smart Grid Transient Stability. 2017 IEEE Power Energy Society General Meeting. :1–5.

In this paper, we present a decentralized nonlinear robust controller to enhance the transient stability margin of synchronous generators. Although, the trend in power system control is shifting towards centralized or distributed controller approaches, the remote data dependency of these schemes fuels cyber-physical security issues. Since the excessive delay or losing remote data affect severely the operation of those controllers, the designed controller emerges as an alternative for stabilization of Smart Grids in case of unavailability of remote data and in the presence of plant parametric uncertainties. The proposed controller actuates distributed storage systems such as flywheels in order to reduce stabilization time and it implements a novel input time delay compensation technique. Lyapunov stability analysis proves that all the tracking error signals are globally uniformly ultimately bounded. Furthermore, the simulation results demonstrate that the proposed controller outperforms traditional local power systems controllers such as Power System Stabilizers.

2018-02-21
Overbye, T. J., Mao, Z., Shetye, K. S., Weber, J. D..  2017.  An interactive, extensible environment for power system simulation on the PMU time frame with a cyber security application. 2017 IEEE Texas Power and Energy Conference (TPEC). :1–6.

Power system simulation environments with appropriate time-fidelity are needed to enable rapid testing of new smart grid technologies and for coupled simulations of the underlying cyber infrastructure. This paper presents such an environment which operates with power system models in the PMU time frame, including data visualization and interactive control action capabilities. The flexible and extensible capabilities are demonstrated by interfacing with a cyber infrastructure simulation.

Wang, C., Xie, H., Bie, Z., Yan, C., Lin, Y..  2017.  Reliability evaluation of AC/DC hybrid power grid considering transient security constraints. 2017 13th IEEE Conference on Automation Science and Engineering (CASE). :1237–1242.

With the rapid development of DC transmission technology and High Voltage Direct Current (HVDC) programs, the reliability of AC/DC hybrid power grid draws more and more attentions. The paper takes both the system static and dynamic characteristics into account, and proposes a novel AC/DC hybrid system reliability evaluation method considering transient security constraints based on Monte-Carlo method and transient stability analytical method. The interaction of AC system and DC system after fault is considered in evaluation process. The transient stability analysis is performed firstly when fault occurs in the system and BPA software is applied to the analysis to improve the computational accuracy and speed. Then the new system state is generated according to the transient analysis results. Then a minimum load shedding model of AC/DC hybrid system with HVDC is proposed. And then adequacy analysis is taken to the new state. The proposed method can evaluate the reliability of AC/DC hybrid grid more comprehensively and reduce the complexity of problem which is tested by IEEE-RTS 96 system and an actual large-scale system.

2018-01-23
Hu, X., Tang, W., Liu, H., Zhang, D., Lian, S., He, Y..  2017.  Construction of bulk power grid security defense system under the background of AC/DC hybrid EHV transmission system and new energy. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. :5713–5719.

With the rapid development of bulk power grid under extra-high voltage (EHV) AC/DC hybrid power system and extensive access of distributed energy resources (DER), operation characteristics of power grid have become increasingly complicated. To cope with new severe challenges faced by safe operation of interconnected bulk power grids, an in-depth analysis of bulk power grid security defense system under the background of EHV and new energy resources was implemented from aspects of management and technology in this paper. Supported by big data and cloud computing, bulk power grid security defense system was divided into two parts: one is the prevention and control of operation risks. Power grid risks are eliminated and influence of random faults is reduced through measures such as network planning, power-cut scheme, risk pre-warning, equipment status monitoring, voltage control, frequency control and adjustment of operating mode. The other is the fault recovery control. By updating “three defense lines”, intelligent relay protection is used to deal with the challenges brought by EHV AC/DC hybrid grid and new energy resources. And then security defense system featured by passive defense is promoted to active type power grid security defense system.

2017-11-27
Biswas, S., Sarwat, A..  2016.  Vulnerabilities in two-area Automatic Generation Control systems under cyberattack. 2016 Resilience Week (RWS). :40–45.

The power grid is a prime target of cyber criminals and warrants special attention as it forms the backbone of major infrastructures that drive the nation's defense and economy. Developing security measures for the power grid is challenging since it is physically dispersed and interacts dynamically with associated cyber infrastructures that control its operation. This paper presents a mathematical framework to investigate stability of two area systems due to data attacks on Automatic Generation Control (AGC) system. Analytical and simulation results are presented to identify attack levels that could drive the AGC system to potentially become unstable.

Parate, M., Tajane, S., Indi, B..  2016.  Assessment of System Vulnerability for Smart Grid Applications. 2016 IEEE International Conference on Engineering and Technology (ICETECH). :1083–1088.

The smart grid is an electrical grid that has a duplex communication. This communication is between the utility and the consumer. Digital system, automation system, computers and control are the various systems of Smart Grid. It finds applications in a wide variety of systems. Some of its applications have been designed to reduce the risk of power system blackout. Dynamic vulnerability assessment is done to identify, quantify, and prioritize the vulnerabilities in a system. This paper presents a novel approach for classifying the data into one of the two classes called vulnerable or non-vulnerable by carrying out Dynamic Vulnerability Assessment (DVA) based on some data mining techniques such as Multichannel Singular Spectrum Analysis (MSSA), and Principal Component Analysis (PCA), and a machine learning tool such as Support Vector Machine Classifier (SVM-C) with learning algorithms that can analyze data. The developed methodology is tested in the IEEE 57 bus, where the cause of vulnerability is transient instability. The results show that data mining tools can effectively analyze the patterns of the electric signals, and SVM-C can use those patterns for analyzing the system data as vulnerable or non-vulnerable and determines System Vulnerability Status.

2017-11-20
Chakraborty, K., Saha, G..  2016.  Off-line voltage security assessment of power transmission systems using UVSI through artificial neural network. 2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI). :158–162.

Coming days are becoming a much challenging task for the power system researchers due to the anomalous increase in the load demand with the existing system. As a result there exists a discordant between the transmission and generation framework which is severely pressurizing the power utilities. In this paper a quick and efficient methodology has been proposed to identify the most sensitive or susceptible regions in any power system network. The technique used in this paper comprises of correlation of a multi-bus power system network to an equivalent two-bus network along with the application of Artificial neural network(ANN) Architecture with training algorithm for online monitoring of voltage security of the system under all multiple exigencies which makes it more flexible. A fast voltage stability indicator has been proposed known as Unified Voltage Stability Indicator (UVSI) which is used as a substratal apparatus for the assessment of the voltage collapse point in a IEEE 30-bus power system in combination with the Feed Forward Neural Network (FFNN) to establish the accuracy of the status of the system for different contingency configurations.

2017-03-29
Kosek, A. M..  2016.  Contextual anomaly detection for cyber-physical security in Smart Grids based on an artificial neural network model. 2016 Joint Workshop on Cyber- Physical Security and Resilience in Smart Grids (CPSR-SG). :1–6.

This paper presents a contextual anomaly detection method and its use in the discovery of malicious voltage control actions in the low voltage distribution grid. The model-based anomaly detection uses an artificial neural network model to identify a distributed energy resource's behaviour under control. An intrusion detection system observes distributed energy resource's behaviour, control actions and the power system impact, and is tested together with an ongoing voltage control attack in a co-simulation set-up. The simulation results obtained with a real photovoltaic rooftop power plant data show that the contextual anomaly detection performs on average 55% better in the control detection and over 56% better in the malicious control detection over the point anomaly detection.

2015-05-05
Kaci, A., Kamwa, I., Dessaint, L.-A., Guillon, S..  2014.  Phase angles as predictors of network dynamic security limits and further implications. PES General Meeting | Conference Exposition, 2014 IEEE. :1-6.

In the United States, the number of Phasor Measurement Units (PMU) will increase from 166 networked devices in 2010 to 1043 in 2014. According to the Department of Energy, they are being installed in order to “evaluate and visualize reliability margin (which describes how close the system is to the edge of its stability boundary).” However, there is still a lot of debate in academia and industry around the usefulness of phase angles as unambiguous predictors of dynamic stability. In this paper, using 4-year of actual data from Hydro-Québec EMS, it is shown that phase angles enable satisfactory predictions of power transfer and dynamic security margins across critical interface using random forest models, with both explanation level and R-squares accuracy exceeding 99%. A generalized linear model (GLM) is next implemented to predict phase angles from day-ahead to hour-ahead time frames, using historical phase angles values and load forecast. Combining GLM based angles forecast with random forest mapping of phase angles to power transfers result in a new data-driven approach for dynamic security monitoring.
 

Kaci, A., Kamwa, I., Dessaint, L.A., Guillon, S..  2014.  Synchrophasor Data Baselining and Mining for Online Monitoring of Dynamic Security Limits. Power Systems, IEEE Transactions on. 29:2681-2695.

When the system is in normal state, actual SCADA measurements of power transfers across critical interfaces are continuously compared with limits determined offline and stored in look-up tables or nomograms in order to assess whether the network is secure or insecure and inform the dispatcher to take preventive action in the latter case. However, synchrophasors could change this paradigm by enabling new features, the phase-angle differences, which are well-known measures of system stress, with the added potential to increase system visibility. The paper develops a systematic approach to baseline the phase-angles versus actual transfer limits across system interfaces and enable synchrophasor-based situational awareness (SBSA). Statistical methods are first used to determine seasonal exceedance levels of angle shifts that can allow real-time scoring and detection of atypical conditions. Next, key buses suitable for SBSA are identified using correlation and partitioning around medoid (PAM) clustering. It is shown that angle shifts of this subset of 15% of the network backbone buses can be effectively used as features in ensemble decision tree-based forecasting of seasonal security margins across critical interfaces.
 

2015-05-04
Shaobu Wang, Shuai Lu, Ning Zhou, Guang Lin, Elizondo, M., Pai, M.A..  2014.  Dynamic-Feature Extraction, Attribution, and Reconstruction (DEAR) Method for Power System Model Reduction. Power Systems, IEEE Transactions on. 29:2049-2059.

In interconnected power systems, dynamic model reduction can be applied to generators outside the area of interest (i.e., study area) to reduce the computational cost associated with transient stability studies. This paper presents a method of deriving the reduced dynamic model of the external area based on dynamic response measurements. The method consists of three steps, namely dynamic-feature extraction, attribution, and reconstruction (DEAR). In this method, a feature extraction technique, such as singular value decomposition (SVD), is applied to the measured generator dynamics after a disturbance. Characteristic generators are then identified in the feature attribution step for matching the extracted dynamic features with the highest similarity, forming a suboptimal “basis” of system dynamics. In the reconstruction step, generator state variables such as rotor angles and voltage magnitudes are approximated with a linear combination of the characteristic generators, resulting in a quasi-nonlinear reduced model of the original system. The network model is unchanged in the DEAR method. Tests on several IEEE standard systems show that the proposed method yields better reduction ratio and response errors than the traditional coherency based reduction methods.
 

2015-04-30
Smith, S., Woodward, C., Liang Min, Chaoyang Jing, Del Rosso, A..  2014.  On-line transient stability analysis using high performance computing. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

In this paper, parallelization and high performance computing are utilized to enable ultrafast transient stability analysis that can be used in a real-time environment to quickly perform “what-if” simulations involving system dynamics phenomena. EPRI's Extended Transient Midterm Simulation Program (ETMSP) is modified and enhanced for this work. The contingency analysis is scaled for large-scale contingency analysis using Message Passing Interface (MPI) based parallelization. Simulations of thousands of contingencies on a high performance computing machine are performed, and results show that parallelization over contingencies with MPI provides good scalability and computational gains. Different ways to reduce the Input/Output (I/O) bottleneck are explored, and findings indicate that architecting a machine with a larger local disk and maintaining a local file system significantly improve the scaling results. Thread-parallelization of the sparse linear solve is explored also through use of the SuperLU_MT library.

Sridhar, S., Govindarasu, M..  2014.  Model-Based Attack Detection and Mitigation for Automatic Generation Control. Smart Grid, IEEE Transactions on. 5:580-591.

Cyber systems play a critical role in improving the efficiency and reliability of power system operation and ensuring the system remains within safe operating margins. An adversary can inflict severe damage to the underlying physical system by compromising the control and monitoring applications facilitated by the cyber layer. Protection of critical assets from electronic threats has traditionally been done through conventional cyber security measures that involve host-based and network-based security technologies. However, it has been recognized that highly skilled attacks can bypass these security mechanisms to disrupt the smooth operation of control systems. There is a growing need for cyber-attack-resilient control techniques that look beyond traditional cyber defense mechanisms to detect highly skilled attacks. In this paper, we make the following contributions. We first demonstrate the impact of data integrity attacks on Automatic Generation Control (AGC) on power system frequency and electricity market operation. We propose a general framework to the application of attack resilient control to power systems as a composition of smart attack detection and mitigation. Finally, we develop a model-based anomaly detection and attack mitigation algorithm for AGC. We evaluate the detection capability of the proposed anomaly detection algorithm through simulation studies. Our results show that the algorithm is capable of detecting scaling and ramp attacks with low false positive and negative rates. The proposed model-based mitigation algorithm is also efficient in maintaining system frequency within acceptable limits during the attack period.