Biblio
The chances of cyber-attacks have been increased because of incorporation of communication networks and information technology in power system. Main objective of the paper is to prove that attacker can launch the attack vector without the knowledge of complete network information and the injected false data can't be detected by power system operator. This paper also deals with analyzing the impact of multi-attacking strategy on the power system. This false data attacks incurs lot of damage to power system, as it misguides the power system operator. Here, we demonstrate the construction of attack vector and later we have demonstrated multiple attacking regions in IEEE 14 bus system. Impact of attack vector on the power system can be observed and it is proved that the attack cannot be detected by power system operator with the help of residue check method.
With the tighter integration of power system and Information and Communication Technology (ICT), power grid is becoming a typical cyber physical system (CPS). It is important to analyze the impact of the cyber event on power system, so that it is necessary to build a co-simulation system for studying the interaction between power system and ICT. In this paper, a cyber physical power system (CPPS) co-simulation platform is proposed, which includes the hardware-in-the-loop (HIL) simulation function. By using flexible interface, various simulation software for power system and ICT can be interconnected into the platform to build co-simulation tools for various simulation purposes. To demonstrate it as a proof, one simulation framework for real life cyber-attack on power system control is introduced. In this case, the real life denial-of-service attack on a router in automatic voltage control (AVC) is simulated to demonstrate impact of cyber-attack on power system.
This paper proposes a software framework to embed the unit commitment problem into a power system dynamic simulator. A sub-hourly, mixed-integer linear programming Security Constrained Unit Commitment (SCUC) with a rolling horizon is utilized to account for the variations of the net load of the system. The SCUC is then included into time domain simulations to study the impact of the net-load variability and uncertainty on the dynamic behavior of the system using different scheduling time periods. A case study based on the 39-bus system illustrates the features of the proposed software framework.
With the growing scale of Cyber-Physical Systems (CPSs), it is challenging to maintain their stability under all operating conditions. How to reduce the downtime and locate the failures becomes a core issue in system design. In this paper, we employ a hierarchical contract-based resilience framework to guarantee the stability of CPS. In this framework, we use Assume Guarantee (A-G) contracts to monitor the non-functional properties of individual components (e.g., power and latency), and hierarchically compose such contracts to deduce information about faults at the system level. The hierarchical contracts enable rapid fault detection in large-scale CPS. However, due to the vast number of components in CPS, manually designing numerous contracts and the hierarchy becomes challenging. To address this issue, we propose a technique to automatically decompose a root contract into multiple lower-level contracts depending on I/O dependencies between components. We then formulate a multi-objective optimization problem to search the optimal parameters of each lower-level contract. This enables automatic contract refinement taking into consideration the communication overhead between components. Finally, we use a case study from the manufacturing domain to experimentally demonstrate the benefits of the proposed framework.
This paper presents a methodology for utilizing Phasor Measurement units (PMUs) for procuring real time synchronized measurements for assessing the security of the power system dynamically. The concept of wide-area dynamic security assessment considers transient instability in the proposed methodology. Intelligent framework based approach for online dynamic security assessment has been suggested wherein the database consisting of critical features associated with the system is generated for a wide range of contingencies, which is utilized to build the data mining model. This data mining model along with the synchronized phasor measurements is expected to assist the system operator in assessing the security of the system pertaining to a particular contingency, thereby also creating possibility of incorporating control and preventive measures in order to avoid any unforeseen instability in the system. The proposed technique has been implemented on IEEE 39 bus system for accurately indicating the security of the system and is found to be quite robust in the case of noise in the measurement data obtained from the PMUs.
Automatic optimal response systems are essential for preserving power system resilience and ensuring faster recovery from emergency under cyber compromise. Numerous research works have developed such response engine for cyber and physical system recovery separately. In this paper, we propose a novel cyber-physical decision support system, SCORE, that computes optimal actions considering pure and hybrid cyber-physical states, using Markov Decision Process (MDP). Such an automatic decision making engine can assist power system operators and network administrators to make a faster response to prevent cascading failures and attack escalation respectively. The hybrid nature of the engine makes the reward and state transition model of the MDP unique. Value iteration and policy iteration techniques are used to compute the optimal actions. Tests are performed on three and five substation power systems to recover from attacks that compromise relays to cause transmission line overflow. The paper also analyses the impact of reward and state transition model on computation. Corresponding results verify the efficacy of the proposed engine.
Based on Markov chain analysis method, the situation prediction of smart grid security and stability can be judged in this paper. First component state transition probability matrix and component state prediction were defined. A fast derivation method of Markov state transition probability matrix using in system state prediction was proposed. The Matlab program using this method was compiled to analyze and obtain the future state probability distribution of grid system. As a comparison the system state distribution was simulated based on sequential Monte Carlo method, which was in good agreement with the state transition matrix, and the validity of the method was verified. Furthermore, the situation prediction of the six-node example was analyzed, which provided an effective prediction and analysis tool for the security situation.
This paper presents a novel technique to quantify the operational resilience for power electronic-based components affected by High-Impact Low-Frequency (HILF) weather-related events such as high speed winds. In this study, the resilience quantification is utilized to investigate how prompt the system goes back to the pre-disturbance or another stable operational state. A complexity quantification metric is used to assess the system resilience. The test system is a Solid-State Transformer (SST) representing a complex, nonlinear interconnected system. Results show the effectiveness of the proposed technique for quantifying the operational resilience in systems affected by weather-related disturbances.
Traditionally, power grid vulnerability assessment methods are separated to the study of nodes vulnerability and edges vulnerability, resulting in the evaluation results are not accurate. A framework for vulnerability assessment is still required for power grid. Thus, this paper proposes a universal method for vulnerability assessment of power grid by establishing a complex network model with uniform weight of nodes and edges. The concept of virtual edge is introduced into the distinct weighted complex network model of power system, and the selection function of edge weight and virtual edge weight are constructed based on electrical and physical parameters. In addition, in order to reflect the electrical characteristics of power grids more accurately, a weighted betweenness evaluation index with transmission efficiency is defined. Finally, the method has been demonstrated on the IEEE 39 buses system, and the results prove the effectiveness of the proposed method.
The normal operation of key measurement and control equipment in power grid (KMCEPG) is of great significance for safe and stable operation of power grid. Firstly, this paper gives a systematic overview of KMCEPG. Secondly, the cyber security risks of KMCEPG on the main station / sub-station side, channel side and terminal side are analyzed and the related vulnerabilities are discovered. Thirdly, according to the risk analysis results, the attack process construction technology of KMCEPG is proposed, which provides the test process and attack ideas for the subsequent KMCEPG-related attack penetration. Fourthly, the simulation penetration test environment is built, and a series of attack tests are carried out on the terminal key control equipment by using the attack flow construction technology proposed in this paper. The correctness of the risk analysis and the effectiveness of the attack process construction technology are verified. Finally, the attack test results are analyzed, and the attack test cases of terminal critical control devices are constructed, which provide the basis for the subsequent attack test. The attack flow construction technology and attack test cases proposed in this paper improve the network security defense capability of key equipment of power grid, ensure the safe and stable operation of power grid, and have strong engineering application value.
The risk of large-scale blackouts and cascading failures in power grids can be due to vulnerable transmission lines and lack of proper remediation techniques after recognizing the first failure. In this paper, we assess the vulnerability of a system using fault chain theory and a power flow-based method, and calculate the probability of large-scale blackout. Further, we consider a Remedial Action Scheme (RAS) to reduce the vulnerability of the system and to harden the critical components against intentional attacks. To identify the most critical lines more efficiently, a new vulnerability index is presented. The effectiveness of the new index and the impact of the applied RAS is illustrated on the IEEE 14-bus test system.
This paper presents a computational platform for dynamic security assessment (DSA) of large electricity grids, developed as part of the iTesla project. It leverages High Performance Computing (HPC) to analyze large power systems, with many scenarios and possible contingencies, thus paving the way for pan-European operational stability analysis. The results of the DSA are summarized by decision trees of 11 stability indicators. The platform's workflow and parallel implementation architecture is described in detail, including the way commercial tools are integrated into a plug-in architecture. A case study of the French grid is presented, with over 8000 scenarios and 1980 contingencies. Performance data of the case study (using 10,000 parallel cores) is analyzed, including task timings and data flows. Finally, the generated decision trees are compared with test data to quantify the functional performance of the DSA platform.
With the rapid development of the smart grid, a large number of intelligent sensors and meters have been introduced in distribution network, which will inevitably increase the integration of physical networks and cyber networks, and bring potential security threats to the operating system. In this paper, the functions of the information system on distribution network are described when cyber attacks appear at the intelligent electronic devices (lED) or at the distribution main station. The effect analysis of the distribution network under normal operating condition or in the fault recovery process is carried out, and the reliability assessment model of the distribution network considering cyber attacks is constructed. Finally, the IEEE-33-bus distribution system is taken as a test system to presented the evaluation process based on the proposed model.
The eleven papers in this special section focus on power electronics-enabled autonomous systems. Power systems are going through a paradigm change from centralized generation to distributed generation and further onto smart grid. Millions of relatively small distributed energy resources (DER), including wind turbines, solar panels, electric vehicles and energy storage systems, and flexible loads are being integrated into power systems through power electronic converters. This imposes great challenges to the stability, scalability, reliability, security, and resiliency of future power systems. This section joins the forces of the communities of control/systems theory, power electronics, and power systems to address various emerging issues of power-electronics-enabled autonomous power systems, paving the way for large-scale deployment of DERs and flexible loads.
Power grid infrastructures have been exposed to several terrorists and cyber attacks from different perspectives and have resulted in critical system failures. Among different attack strategies, simultaneous attack is feasible for the attacker if enough resources are available at the moment. In this paper, vulnerability analysis for simultaneous attack is investigated, using a modified cascading failure simulator with reduced calculation time than the existing methods. A new damage measurement matrix is proposed with the loss of generation power and time to reach the steady-state condition. The combination of attacks that can result in a total blackout in the shortest time are considered as the strongest simultaneous attack for the system from attacker's viewpoint. The proposed approach can be used for general power system test cases. In this paper, we conducted the experiments on W&W 6 bus system and IEEE 30 bus system for demonstration of the result. The modified simulator can automatically find the strongest attack combinations for reaching maximum damage in terms of generation power loss and time to reach black-out.
Reliable operation of electrical power systems in the presence of multiple critical N - k contingencies is an important challenge for the system operators. Identifying all the possible N - k critical contingencies to design effective mitigation strategies is computationally infeasible due to the combinatorial explosion of the search space. This paper describes two heuristic algorithms based on the iterative pruning of the candidate contingency set to effectively and efficiently identify all the critical N - k contingencies resulting in system failure. These algorithms are applied to the standard IEEE-14 bus system, IEEE-39 bus system, and IEEE-57 bus system to identify multiple critical N - k contingencies. The algorithms are able to capture all the possible critical N - k contingencies (where 1 ≤ k ≤ 9) without missing any dangerous contingency.