Visible to the public Biblio

Filters: Keyword is power system stability  [Clear All Filters]
2022-07-05
Zhang, Guangdou, Li, Jian, Bamisile, Olusola, Zhang, Zhenyuan, Cai, Dongsheng, Huang, Qi.  2021.  A Data Driven Threat-Maximizing False Data Injection Attack Detection Method with Spatio-Temporal Correlation. 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :318—325.
As a typical cyber-physical system, the power system utilizes advanced information and communication technologies to transmit crucial control signals in communication channels. However, many adversaries can construct false data injection attacks (FDIA) to circumvent traditional bad data detection and break the stability of the power grid. In this paper, we proposed a threat-maximizing FDIA model from the view of attackers. The proposed FDIA can not only circumvent bad data detection but can also cause a terrible fluctuation in the power system. Furthermore, in order to eliminate potential attack threats, the Spatio-temporal correlations of measurement matrices are considered. To extract the Spatio-temporal features, a data-driven detection method using a deep convolutional neural network was proposed. The effectiveness of the proposed FDIA model and detection are assessed by a simulation on the New England 39 bus system. The results show that the FDIA can cause a negative effect on the power system’s stable operation. Besides, the results reveal that the proposed FDIA detection method has an outstanding performance on Spatio-temporal features extraction and FDIA recognition.
Parizad, Ali, Hatziadoniu, Constantine.  2021.  False Data Detection in Power System Under State Variables' Cyber Attacks Using Information Theory. 2021 IEEE Power and Energy Conference at Illinois (PECI). :1—8.
State estimation (SE) plays a vital role in the reliable operation of modern power systems, gives situational awareness to the operators, and is employed in different functions of the Energy Management System (EMS), such as Optimal Power Flow (OPF), Contingency Analysis (CA), power market mechanism, etc. To increase SE's accuracy and protect it from compromised measurements, Bad Data Detection (BDD) algorithm is employed. However, the integration of Information and Communication Technologies (ICT) into the modern power system makes it a complicated cyber-physical system (CPS). It gives this opportunity to an adversary to find some loopholes and flaws, penetrate to CPS layer, inject false data, bypass existing BDD schemes, and consequently, result in security and stability issues. This paper employs a semi-supervised learning method to find normal data patterns and address the False Data Injection Attack (FDIA) problem. Based on this idea, the Probability Distribution Functions (PDFs) of measurement variations are derived for training and test data sets. Two distinct indices, i.e., Absolute Distance (AD) and Relative Entropy (RE), a concept in Information Theory, are utilized to find the distance between these two PDFs. In case an intruder compromises data, the related PDF changes. However, we demonstrate that AD fails to detect these changes. On the contrary, the RE index changes significantly and can properly detect FDIA. This proposed method can be used in a real-time attack detection process where the larger RE index indicates the possibility of an attack on the real-time data. To investigate the proposed methodology's effectiveness, we utilize the New York Independent System Operator (NYISO) data (Jan.-Dec. 2019) with a 5-minute resolution and map it to the IEEE 14-bus test system, and prepare an appropriate data set. After that, two different case studies (attacks on voltage magnitude ( Vm), and phase angle (θ)) with different attack parameters (i.e., 0.90, 0.95, 0.98, 1.02, 1.05, and 1.10) are defined to assess the impact of an attack on the state variables at different buses. The results show that RE index is a robust and reliable index, appropriate for real-time applications, and can detect FDIA in most of the defined case studies.
2022-05-05
Xue, Nan, Wu, Xiaofan, Gumussoy, Suat, Muenz, Ulrich, Mesanovic, Amer, Dong, Zerui, Bharati, Guna, Chakraborty, Sudipta, Electric, Hawaiian.  2021.  Dynamic Security Optimization for N-1 Secure Operation of Power Systems with 100% Non-Synchronous Generation: First experiences from Hawai'i Island. 2021 IEEE Power Energy Society General Meeting (PESGM). :1—5.

This paper presents some of our first experiences and findings in the ARPA-E project ReNew100, which is to develop an operator support system to enable stable operation of power system with 100% non-synchronous (NS) generation. The key to 100% NS system, as found in many recent studies, is to establish the grid frequency reference using grid-forming (GFM) inverters. In this paper, we demonstrate in Electro-Magnetic-Transient (EMT) simulations, based on Hawai'i big island system with 100% NS capacity, that a system can be operated stably with the help of GFM inverters and appropriate controller parameters for the inverters. The dynamic security optimization (DSO) is introduced for optimizing the inverter control parameters to improve stability of the system towards N-1 contingencies. DSO is verified for five critical N-1 contingencies of big island system identified by Hawaiian Electric. The simulation results show significant stability improvement from DSO. The results in this paper share some insight, and provide a promising solution for operating grid in general with high penetration or 100% of NS generation.

Han, Weiheng, Cai, Weiwei, Zhang, Guangjia, Yu, Weiguo, Pan, Junjun, Xiang, Longyun, Ning, Tao.  2021.  Cyclic Verification Method of Security Control System Strategy Table Based on Constraint Conditions and Whole Process Dynamic Simulation. 2021 IEEE/IAS Industrial and Commercial Power System Asia (I CPS Asia). :698—703.

The correctness of security control system strategy is very important to ensure the stability of power system. Aiming at the problem that the current security control strategy verification method is not enough to match the increasingly complex large power grid, this paper proposes a cyclic verification method of security control system strategy table based on constraints and whole process dynamic simulation. Firstly, the method is improved based on the traditional security control strategy model to make the strategy model meet certain generalization ability; And on the basis of this model, the cyclic dynamic verification of the strategy table is realized based on the constraint conditions and the whole process dynamic simulation, which not only ensures the high accuracy of strategy verification for the security control strategy of complex large power grid, but also ensures that the power system is stable and controllable. Finally, based on a certain regional power system, the optimal verification of strategy table verification experiment is realized. The experimental results show that the average processing time of the proposed method is 10.32s, and it can effectively guarantee the controllability and stability of power grid.

Wang, Qibing, Du, Xin, Zhang, Kai, Pan, Junjun, Yu, Weiguo, Gao, Xiaoquan, Lin, Rihong.  2021.  Reliability Test Method of Power Grid Security Control System Based on BP Neural Network and Dynamic Group Simulation. 2021 IEEE/IAS Industrial and Commercial Power System Asia (I CPS Asia). :680—685.

Aiming at the problems of imperfect dynamic verification of power grid security and stability control strategy and high test cost, a reliability test method of power grid security control system based on BP neural network and dynamic group simulation is proposed. Firstly, the fault simulation results of real-time digital simulation system (RTDS) software are taken as the data source, and the dynamic test data are obtained with the help of the existing dispatching data network, wireless virtual private network, global positioning system and other communication resources; Secondly, the important test items are selected through the minimum redundancy maximum correlation algorithm, and the test items are used to form a feature set, and then the BP neural network model is used to predict the test results. Finally, the dynamic remote test platform is tested by the dynamic whole group simulation of the security and stability control system. Compared with the traditional test methods, the proposed method reduces the test cost by more than 50%. Experimental results show that the proposed method can effectively complete the reliability test of power grid security control system based on dynamic group simulation, and reduce the test cost.

Raab, Alexander, Mehlmann, Gert, Luther, Matthias, Sennewald, Tom, Schlegel, Steffen, Westermann, Dirk.  2021.  Steady-State and Dynamic Security Assessment for System Operation. 2021 International Conference on Smart Energy Systems and Technologies (SEST). :1—6.

This contribution provides the implementation of a holistic operational security assessment process for both steady-state security and dynamic stability. The merging of steady-state and dynamic security assessment as a sequential process is presented. A steady-state and dynamic modeling of a VSC-HVDC was performed including curative and stabilizing measures as remedial actions. The assessment process was validated by a case study on a modified version of the Nordic 32 system. Simulation results showed that measure selection based on purely steady-state contingency analysis can lead to loss of stability in time domain. A subsequent selection of measures on the basis of the dynamic security assessment was able to guarantee the operational security for the stationary N-1 scenario as well as the power system stability.

2022-04-18
Li, Jie, Liu, Hui, Zhang, Yinbao, Su, Guojie, Wang, Zezhong.  2021.  Artificial Intelligence Assistant Decision-Making Method for Main Amp; Distribution Power Grid Integration Based on Deep Deterministic Network. 2021 IEEE 4th International Electrical and Energy Conference (CIEEC). :1–5.
This paper studies the technology of generating DDPG (deep deterministic policy gradient) by using the deep dual network and experience pool network structure, and puts forward the sampling strategy gradient algorithm to randomly select actions according to the learned strategies (action distribution) in the continuous action space, based on the dispatching control system of the power dispatching control center of a super city power grid, According to the actual characteristics and operation needs of urban power grid, The developed refined artificial intelligence on-line security analysis and emergency response plan intelligent generation function realize the emergency response auxiliary decision-making intelligent generation function. According to the hidden danger of overload and overload found in the online safety analysis, the relevant load lines of the equipment are searched automatically. Through the topology automatic analysis, the load transfer mode is searched to eliminate or reduce the overload or overload of the equipment. For a variety of load transfer modes, the evaluation index of the scheme is established, and the optimal load transfer mode is intelligently selected. Based on the D5000 system of Metropolitan power grid, a multi-objective and multi resource coordinated security risk decision-making assistant system is implemented, which provides integrated security early warning and decision support for the main network and distribution network of city power grid. The intelligent level of power grid dispatching management and dispatching operation is improved. The state reality network can analyze the joint state observations from the action reality network, and the state estimation network uses the actor action as the input. In the continuous action space task, DDPG is better than dqn and its convergence speed is faster.
2022-02-24
Ramirez-Gonzalez, M., Segundo Sevilla, F. R., Korba, P..  2021.  Convolutional Neural Network Based Approach for Static Security Assessment of Power Systems. 2021 World Automation Congress (WAC). :106–110.
Steady-state response of the grid under a predefined set of credible contingencies is an important component of power system security assessment. With the growing complexity of electrical networks, fast and reliable methods and tools are required to effectively assist transmission grid operators in making decisions concerning system security procurement. In this regard, a Convolutional Neural Network (CNN) based approach to develop prediction models for static security assessment under N-1 contingency is investigated in this paper. The CNN model is trained and applied to classify the security status of a sample system according to given node voltage magnitudes, and active and reactive power injections at network buses. Considering a set of performance metrics, the superior performance of the CNN alternative is demonstrated by comparing the obtained results with a support vector machine classifier algorithm.
2022-02-04
Roy, Vishwajit, Noureen, Subrina Sultana, Atique, Sharif, Bayne, Stephen, Giesselmann, Michael.  2021.  Intrusion Detection from Synchrophasor Data propagation using Cyber Physical Platform. 2021 IEEE Conference on Technologies for Sustainability (SusTech). :1–5.
Some of the recent reports show that Power Grid is a target of attack and gradually the need for understanding the security of Grid network is getting a prime focus. The Department of Homeland Security has imposed focus on Cyber Threats on Power Grid in their "Cyber Security Strategy,2018" [1] . DHS has focused on innovations to manage risk attacks on Power System based national resources. Power Grid is a cyber physical system which consists of power flow and data transmission. The important part of a microgrid is the two-way power flow which makes the system complex on monitoring and control. In this paper, we have tried to study different types of attacks which change the data propagation of Synchrophasor, network communication interruption behavior and find the data propagation scenario due to attack. The focus of the paper is to develop a platform for Synchrophasor based data network attack study which is a part of Microgrid design. Different types of intrusion models were studied to observe change in Synchrophasor data pattern which will help for further prediction to improve Microgrid resiliency for different types of cyber-attack.
2022-01-31
Shivaie, Mojtaba, Mokhayeri, Mohammad, Narooie, Mohammadali, Ansari, Meisam.  2021.  A White-Box Decision Tree-Based Preventive Strategy for Real-Time Islanding Detection Using Wide-Area Phasor Measurement. 2021 IEEE Texas Power and Energy Conference (TPEC). :1–6.
With the ever-increasing energy demand and enormous development of generation capacity, modern bulk power systems are mostly pushed to operate with narrower security boundaries. Therefore, timely and reliable assessment of power system security is an inevitable necessity to prevent widespread blackouts and cascading outages. In this paper, a new white-box decision tree-based preventive strategy is presented to evaluate and enhance the power system dynamic security versus the credible N-K contingencies originating from transient instabilities. As well, a competent operating measure is expertly defined to detect and identify the islanding and non-islanding conditions with the aid of a wide-area phasor measurement system. The newly developed strategy is outlined by a three-level simulation with the aim of guaranteeing the power system dynamic security. In the first-level, six hundred islanding and non-islanding scenarios are generated using an enhanced version of the ID3 algorithm, referred to as the C4.5 algorithms. In the second-level, optimal C4.5 decision trees are offline trained based on operating parameters achieved by the reduction error pruning method. In the third level, however, all trained decision trees are rigorously investigated offline and online; and then, the most accurate and reliable decision tree is selected. The newly developed strategy is examined on the IEEE New England 39-bus test system, and its effectiveness is assured by simulation studies.
2022-01-25
Ye, Yadi, Zhang, Leyou, You, Wenting, Mu, Yi.  2021.  Secure Decentralized Access Control Policy for Data Sharing in Smart Grid. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
Smart grid has improved the security, efficiency of the power system and balanced the supply and demand by intelligent management, which enhanced stability and reliability of power grid. The key point to achieve them is real-time data and consumption data sharing by using fine-grained policies. But it will bring the leakage of the privacy of the users and the loss of data control rights of the data owner. The reported solutions can not give the best trade-off among the privacy protection, control over the data shared and confidentiality. In addition, they can not solve the problems of large computation overhead and dynamic management such as users' revocation. This paper aims at these problems and proposes a decentralized attribute-based data sharing scheme. The proposed scheme ensures the secure sharing of data while removing the central authority and hiding user's identity information. It uses attribute-based signcryption (ABSC) to achieve data confidentiality and authentication. Under this model, attribute-based encryption gives the access policies for users and keeps the data confidentiality, and the attribute-based signature is used for authentication of the primary ciphertext-integrity. It is more efficient than "encrypt and then sign" or "sign and then encrypt". In addition, the proposed scheme enables user's revocation and public verifiability. Under the random oracle model, the security and the unforgeability against adaptive chosen message attack are demonstrated.
2021-11-29
Arunagirinathan, Paranietharan, Venayagamoorthy, Ganesh K..  2020.  Situational Awareness of Power System Stabilizers’ Performance in Energy Control Centers. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–8.
Undamped power system oscillations are detrimental to stable and security of the electric grid. Historically, poorly damped low frequency rotor oscillations have caused system blackouts or brownouts. It is required to monitor the oscillation damping controllers such as power system stabilizers' (PSS) performance at energy control centers as well as at power plant control centers. Phasor measurement units (PMUs) based time response and frequency response information on PSS performance is collected. A fuzzy logic system is developed to combine the time and frequency response information to derive the situational awareness on PSS performance on synchronous generator's oscillation(s). A two-area four-machine benchmark power system is simulated on a real-time digital simulator platform. Fuzzy logic system developed is evaluated for different system disturbances. Situational awareness on PSS performance on synchronous generator's oscillation(s) allows the control center operator to enhance the power system operation more stable and secure.
2021-10-12
Sethi, Kamalakanta, Pradhan, Ankit, Bera, Padmalochan.  2020.  Attribute-Based Data Security with Obfuscated Access Policy for Smart Grid Applications. 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). :503–506.
Smart grid employs intelligent transmission and distribution networks for effective and reliable delivery of electricity. It uses fine-grained electrical measurements to attain optimized reliability and stability by sharing these measurements among different entities of energy management systems of the grid. There are many stakeholders like users, phasor measurement units (PMU), and other entities, with changing requirements involved in the sharing of the data. Therefore, data security plays a vital role in the correct functioning of a power grid network. In this paper, we propose an attribute-based encryption (ABE) for secure data sharing in Smart Grid architectures as ABE enables efficient and secure access control. Also, the access policy is obfuscated to preserve privacy. We use Linear Secret Sharing (LSS) Scheme for supporting any monotone access structures, thereby enhancing the expressiveness of access policies. Finally, we also analyze the security, access policy privacy and collusion resistance properties along with efficiency analysis of our cryptosystem.
2021-10-04
Benanti, F., Sanseverino, E. Riva, Sciumè, G., Zizzo, G..  2020.  A Peer-to-Peer Market Algorithm for a Blockchain Platform. 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1–6.
In an era of technological revolution in which everything becomes smarter and connected, the blockchain can introduce a new model for energy transactions able to grant more simplicity, security and transparency for end-users. The blockchain technology is characterized by a distributed architecture without a trusted and centralized authority, and, therefore, it appears as the perfect solutions for managing exchanges between peers. In this paper, a market algorithm that can be easily transferred to a smart contract for maximizing the match between produced and consumed energy in a micro-grid is presented. The algorithm supports energy transactions between peers (both producers and consumers) and could be one of the main executables implemented using a blockchain platform. The case study presented in this paper shows how the end-users through the blockchain could select among the possible energy transactions those more suitable to offer specific ancillary services to the grid operator without involving the grid operator itself or a third-party aggregator.
2021-09-30
Hu, Zenghui, Mu, Xiaowu.  2020.  Event-triggered Control for Stochastic Networked Control Systems under DoS Attacks. 2020 39th Chinese Control Conference (CCC). :4389–4394.
This paper investigates the event-triggered control (ETC) problem for stochastic networked control systems (NCSs) with exogenous disturbances and Denial-of-Service (DoS) attacks. The ETC strategy is proposed to reduce the utilization of network resource while defending the DoS attacks. Based on the introduced ETC strategy, sufficient conditions, which rely on the frequency and duration properties of DoS attacks, are obtained to achieve the stochastic input-to-state stability and Zeno-freeness of the ETC stochastic NCSs. An example of air vehicle system is given to explain the effectiveness of proposed ETC strategy.
2021-09-16
Singh, Vivek Kumar, Govindarasu, Manimaran.  2020.  A Novel Architecture for Attack-Resilient Wide-Area Protection and Control System in Smart Grid. 2020 Resilience Week (RWS). :41–47.
Wide-area protection and control (WAPAC) systems are widely applied in the energy management system (EMS) that rely on a wide-area communication network to maintain system stability, security, and reliability. As technology and grid infrastructure evolve to develop more advanced WAPAC applications, however, so do the attack surfaces in the grid infrastructure. This paper presents an attack-resilient system (ARS) for the WAPAC cybersecurity by seamlessly integrating the network intrusion detection system (NIDS) with intrusion mitigation and prevention system (IMPS). In particular, the proposed NIDS utilizes signature and behavior-based rules to detect attack reconnaissance, communication failure, and data integrity attacks. Further, the proposed IMPS applies state transition-based mitigation and prevention strategies to quickly restore the normal grid operation after cyberattacks. As a proof of concept, we validate the proposed generic architecture of ARS by performing experimental case study for wide-area protection scheme (WAPS), one of the critical WAPAC applications, and evaluate the proposed NIDS and IMPS components of ARS in a cyber-physical testbed environment. Our experimental results reveal a promising performance in detecting and mitigating different classes of cyberattacks while supporting an alert visualization dashboard to provide an accurate situational awareness in real-time.
2021-05-13
Liu, Xinghua, Bai, Dandan, Jiang, Rui.  2020.  Load Frequency Control of Multi-area Power Systems under Deception Attacks*. 2020 Chinese Automation Congress (CAC). :3851–3856.
This paper investigated the sliding mode load frequency control (LFC) for an multi-area power system (MPS) under deception attacks (DA). A Luenberger observer is designed to obtain the state estimate of MPS. By using the Lyapunov-Krasovskii method, a sliding mode surface (SMS) is designed to ensure the stability. Then the accessibility analysis ensures that the trajectory of the MPS can reach the specified SMS. Finally, the serviceability of the method is explained by providing a case study.
2021-03-22
Hosseinipour, A., Hojabri, H..  2020.  Small-Signal Stability Analysis and Active Damping Control of DC Microgrids Integrated With Distributed Electric Springs. IEEE Transactions on Smart Grid. 11:3737–3747.
Series DC electric springs (DCESs) are a state-of-the-art demand-side management (DSM) technology with the capability to reduce energy storage requirements of DC microgrids by manipulating the power of non-critical loads (NCLs). As the stability of DC microgrids is highly prone to dynamic interactions between the system active and passive components, this study intends to conduct a comprehensive small-signal stability analysis of a community DC microgrid integrated with distributed DCESs considering the effect of destabilizing constant power loads (CPLs). For this purpose, after deriving the small-signal model of a DCES-integrated microgrid, the sensitivity of the system dominant frequency modes to variations of various physical and control parameters is evaluated by means of eigenvalue analysis. Next, an active damping control method based on virtual RC parallel impedance is proposed for series DCESs to compensate for their slow dynamic response and to provide a dynamic stabilization function within the microgrid. Furthermore, impedance-based stability analysis is utilized to study the DC microgrid expandability in terms of integration with multiple DCESs. Finally, several case studies are presented to verify analytical findings of the paper and to evaluate the dynamic performance of the DC microgrid.
2021-03-15
Shahkar, S., Khorasani, K..  2020.  A Resilient Control Against Time-Delay Switch and Denial of Service Cyber Attacks on Load Frequency Control of Distributed Power Systems. 2020 IEEE Conference on Control Technology and Applications (CCTA). :718—725.

A time-delay switch (TDS) cyber attack is a deliberate attempt by malicious adversaries aiming at destabilizing a power system by impeding the communication signals to/from the centralized controller from/to the network sensors and generating stations that participate in the load frequency control (LFC). A TDS cyber attack can be targeting the sensing loops (transmitting network measurements to the centralized controller) or the control signals dispatched from the centralized controller to the governor valves of the generating stations. A resilient TDS control strategy is proposed and developed in this work that thwarts network instabilities that are caused by delays in the sensing loops, and control commands, and guarantees normal operation of the LFC mechanism. This will be achieved by augmenting the telemetered control commands with locally generated feedback control laws (i.e., “decentralized” control commands) taking measurements that are available and accessible at the power generating stations (locally) independent from all the telemetered signals to/from the centralized controller. Our objective is to devise a controller that is capable of circumventing all types of TDS and DoS (Denial of Service) cyber attacks as well as a broad class of False Data Injection (FDI) cyber attacks.

2021-02-16
Siu, J. Y., Panda, S. Kumar.  2020.  A Specification-Based Detection for Attacks in the Multi-Area System. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :1526—1526.
In the past decade, cyber-attack events on the power grid have proven to be sophisticated and advanced. These attacks led to severe consequences on the grid operation, such as equipment damage or power outages. Hence, it is more critical than ever to develop tools for security assessment and detection of anomalies in the cyber-physical grid. For an extensive power grid, it is complex to analyze the causes of frequency deviations. Besides, if the system is compromised, attackers can leverage on the frequency deviation to bypass existing protection measures of the grid. This paper aims to develop a novel specification-based method to detect False Data Injection Attacks (FDIAs) in the multi-area system. Firstly, we describe the implementation of a three-area system model. Next, we assess the risk and devise several intrusion scenarios. Specifically, we inject false data into the frequency measurement and Automatic Generation Control (AGC) signals. We then develop a rule-based method to detect anomalies at the system-level. Our simulation results proves that the proposed algorithm can detect FDIAs in the system.
2020-12-11
Han, Y., Zhang, W., Wei, J., Liu, X., Ye, S..  2019.  The Study and Application of Security Control Plan Incorporating Frequency Stability (SCPIFS) in CPS-Featured Interconnected Asynchronous Grids. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :349—354.

The CPS-featured modern asynchronous grids interconnected with HVDC tie-lines facing the hazards from bulk power imbalance shock. With the aid of cyber layer, the SCPIFS incorporates the frequency stability constrains is put forwarded. When there is bulk power imbalance caused by HVDC tie-lines block incident or unplanned loads increasing, the proposed SCPIFS ensures the safety and frequency stability of both grids at two terminals of the HVDC tie-line, also keeps the grids operate economically. To keep frequency stability, the controllable variables in security control strategy include loads, generators outputs and the power transferred in HVDC tie-lines. McCormick envelope method and ADMM are introduced to solve the proposed SCPIFS optimization model. Case studies of two-area benchmark system verify the safety and economical benefits of the SCPFS. HVDC tie-line transferred power can take the advantage of low cost generator resource of both sides utmost and avoid the load shedding via tuning the power transferred through the operating tie-lines, thus the operation of both connected asynchronous grids is within the limit of frequency stability domain.

Ma, X., Sun, X., Cheng, L., Guo, X., Liu, X., Wang, Z..  2019.  Parameter Setting of New Energy Sources Generator Rapid Frequency Response in Northwest Power Grid Based on Multi-Frequency Regulation Resources Coordinated Controlling. 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP). :218—222.
Since 2016, the northwest power grid has organized new energy sources to participate in the rapid frequency regulation research and carried out pilot test work at the sending end large power grid. The experimental results show that new energy generator has the ability to participate in the grid's rapid frequency regulation, and its performance is better than that of conventional power supply units. This paper analyses the requirements for fast frequency control of the sending end large power grid in northwest China, and proposes the segmented participation indexes of photovoltaic and wind power in the frequency regulation of power grids. In accordance with the idea of "clear responsibilities, various types of unit coordination", the parameter setting of new energy sources rapid frequency regulation is completed based on the coordinated control based on multi-frequency regulation resources in northwest power grid. The new energy fast frequency regulation model was established, through the PSASP power grid stability simulation program and the large-scale power grid stability simulation analysis was completed. The simulation results show that the wind power and photovoltaic adopting differential rapid frequency regulation parameters can better utilize the rapid frequency regulation capability of various types of power sources, realize the coordinated rapid frequency regulation of all types of units, and effectively improve the frequency security prevention and control level of the sending end large power grid.
2020-12-02
Scheffer, V., Ipach, H., Becker, C..  2019.  Distribution Grid State Assessment for Control Reserve Provision Using Boundary Load Flow. 2019 IEEE Milan PowerTech. :1—6.

With the increasing expansion of wind and solar power plants, these technologies will also have to contribute control reserve to guarantee frequency stability within the next couple of years. In order to maintain the security of supply at the same level in the future, it must be ensured that wind and solar power plants are able to feed in electricity into the distribution grid without bottlenecks when activated. The present work presents a grid state assessment, which takes into account the special features of the control reserve supply. The identification of a future grid state, which is necessary for an ex ante evaluation, poses the challenge of forecasting loads. The Boundary Load Flow method takes load uncertainties into account and is used to estimate a possible interval for all grid parameters. Grid congestions can thus be detected preventively and suppliers of control reserve can be approved or excluded. A validation in combination with an exemplary application shows the feasibility of the overall methodology.

2020-11-20
Yogarathinam, A., Chaudhuri, N. R..  2019.  Wide-Area Damping Control Using Multiple DFIG-Based Wind Farms Under Stochastic Data Packet Dropouts. 2019 IEEE Power Energy Society General Meeting (PESGM). :1—1.
Data dropouts in communication network can have a significant impact on wide-area oscillation damping control of a smart power grid with large-scale deployment of distributed and networked phasor measurement units and wind energy resources. Remote feedback signals sent through communication channels encounter data dropout, which is represented by the Gilbert-Elliott model. An observer-driven reduced copy (ORC) approach is presented, which uses the knowledge of the nominal system dynamics during data dropouts to improve the damping performance where conventional feedback would suffer. An expression for the expectation of the bound on the error norm between the actual and the estimated states relating uncertainties in the cyber system due to data dropout and physical system due to change in operating conditions is also derived. The key contribution comes from the analytical derivation of the impact of coupling between the cyber and the physical layer on ORC performance. Monte Carlo simulation is performed to calculate the dispersion of the error bound. Nonlinear time-domain simulations demonstrate that the ORC produces significantly better performance compared to conventional feedback under higher data drop situations.
2020-09-28
Patsonakis, Christos, Terzi, Sofia, Moschos, Ioannis, Ioannidis, Dimosthenis, Votis, Konstantinos, Tzovaras, Dimitrios.  2019.  Permissioned Blockchains and Virtual Nodes for Reinforcing Trust Between Aggregators and Prosumers in Energy Demand Response Scenarios. 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1–6.
The advancement and penetration of distributed energy resources (DERs) and renewable energy sources (RES) are transforming legacy energy systems in an attempt to reduce carbon emissions and energy waste. Demand Response (DR) has been identified as a key enabler of integrating these, and other, Smart Grid technologies, while, simultaneously, ensuring grid stability and secure energy supply. The massive deployment of smart meters, IoT devices and DERs dictate the need to move to decentralized, or even localized, DR schemes in the face of the increased scale and complexity of monitoring and coordinating the actors and devices in modern smart grids. Furthermore, there is an inherent need to guarantee interoperability, due to the vast number of, e.g., hardware and software stakeholders, and, more importantly, promote trust and incentivize the participation of customers in DR schemes, if they are to be successfully deployed.In this work, we illustrate the design of an energy system that addresses all of the roadblocks that hinder the large scale deployment of DR services. Our DR framework incorporates modern Smart Grid technologies, such as fog-enabled and IoT devices, DERs and RES to, among others, automate asset handling and various time-consuming workflows. To guarantee interoperability, our system employs OpenADR, which standardizes the communication of DR signals among energy stakeholders. Our approach acknowledges the need for decentralization and employs blockchains and smart contracts to deliver a secure, privacy-preserving, tamper-resistant, auditable and reliable DR framework. Blockchains provide the infrastructure to design innovative DR schemes and incentivize active consumer participation as their aforementioned properties promote transparency and trust. In addition, we harness the power of smart contracts which allows us to design and implement fully automated contractual agreements both among involved stakeholders, as well as on a machine-to-machine basis. Smart contracts are digital agents that "live" in the blockchain and can encode, execute and enforce arbitrary agreements. To illustrate the potential and effectiveness of our smart contract-based DR framework, we present a case study that describes the exchange of DR signals and the autonomous instantiation of smart contracts among involved participants to mediate and monitor transactions, enforce contractual clauses, regulate energy supply and handle payments/penalties.