Biblio
The use of Electric Vehicle (EV) is growing rapidly due to its environmental benefits. However, the major problem of these vehicles is their limited battery, the lack of charging stations and the re-charge time. Introducing Information and Communication Technologies, in the field of EV, will improve energy efficiency, energy consumption predictions, availability of charging stations, etc. The Internet of Vehicles based only on Electric Vehicles (IoEV) is a complex system. It is composed of vehicles, humans, sensors, road infrastructure and charging stations. All these entities communicate using several communication technologies (ZigBee, 802.11p, cellular networks, etc). IoEV is therefore vulnerable to significant attacks such as DoS, false data injection, modification. Hence, security is a crucial factor for the development and the wide deployment of Internet of Electric Vehicles (IoEV). In this paper, we present an overview of security issues of the IoEV architecture and we highlight open issues that make the IoEV security a challenging research area in the future.
With the rapid development of the Internet of vehicles, there is a huge amount of multimedia data becoming a hidden trouble in the Internet of Things. Therefore, it is necessary to process and store them in real time as a way of big data curation. In this paper, a method of real-time processing and storage based on CDN in vehicle monitoring system is proposed. The MPEG-DASH standard is used to process the multimedia data by dividing them into MPD files and media segments. A real-time monitoring system of vehicle on the basis of the method introduced is designed and implemented.
With the advent of the electric vehicle market, the problem of locating a vehicle is becoming more and more important. Smart roads are creating, where the car control system can work without a person - communicating with the elements on the road. The standard technologies, such as GPS, can't always accurately determine the location, and not all vehicles have a GPS-module. It is very important to build an effective secure communication protocol between the vehicle and the base stations on the road. In this paper we consider different methods of location determination, propose the improved communicating protocol between the vehicle and the base station.
Internet of Vehicle (IoV) is an essential part of the Intelligent Transportation system (ITS) which is growing exponentially in the automotive industry domain. The term IoV is used in this paper for Internet of Vehicles. IoV is conceptualized for sharing traffic, safety and several other vehicle-related information between vehicles and end user. In recent years, the number of connected vehicles has increased allover the world. Having information sharing and connectivity as its advantage, IoV also faces the challenging task in the cybersecurity-related matters. The future consists of crowded places in an interconnected world through wearable's, sensors, smart phones etc. We are converging towards IoV technology and interactions with crowded space of connected peoples. However, this convergence demands high-security mechanism from the connected crowd as-well-as other connected vehicles to safeguard of proposed IoV system. In this paper, we coin the term of smart people crowd (SPC) and the smart vehicular crowd (SVC) for the Internet of Vehicles (IoV). These specific crowds of SPC and SVC are the potential cyber attackers of the smart IoV. People connected to the internet in the crowded place are known as a smart crowd. They have interfacing devices with sensors and the environment. A smart crowd would also consist of the random number of smart vehicles. With the future converging in to the smart connected framework for crowds, vehicles and connected vehicles, we present a novel cyber-physical surveillance system (CPSS) framework to tackle the security threats in the crowded environment for the smart automotive industry and provide the cyber security mechanism in the crowded places. We also describe an overview of use cases and their security challenges on the Internet of Vehicles.
Security of Internet of vehicles (IoV) is critical as it promises to provide with safer and secure driving. IoV relies on VANETs which is based on V2V (Vehicle to Vehicle) communication. The vehicles are integrated with various sensors and embedded systems allowing them to gather data related to the situation on the road. The collected data can be information associated with a car accident, the congested highway ahead, parked car, etc. This information exchanged with other neighboring vehicles on the road to promote safe driving. IoV networks are vulnerable to various security attacks. The V2V communication comprises specific vulnerabilities which can be manipulated by attackers to compromise the whole network. In this paper, we concentrate on intrusion detection in IoV and propose a multilayer perceptron (MLP) neural network to detect intruders or attackers on an IoV network. Results are in the form of prediction, classification reports, and confusion matrix. A thorough simulation study demonstrates the effectiveness of the new MLP-based intrusion detection system.
The Internet of Vehicles (IoV) will connect not only mobile devices with vehicles, but it will also connect vehicles with each other, and with smart offices, buildings, homes, theaters, shopping malls, and cities. The IoV facilitates optimal and reliable communication services to connected vehicles in smart cities. The backbone of connected vehicles communication is the critical V2X infrastructures deployment. The spectrum utilization depends on the demand by the end users and the development of infrastructure that includes efficient automation techniques together with the Internet of Things (IoT). The infrastructure enables us to build smart environments for spectrum utilization, which we refer to as Smart Spectrum Utilization (SSU). This paper presents an integrated system consisting of SSU with IoV. However, the tasks of securing IoV and protecting it from cyber attacks present considerable challenges. This paper introduces an IoV security system using deep learning approach to develop secure applications and reliable services. Deep learning composed of unsupervised learning and supervised learning, could optimize the IoV security system. The deep learning methodology is applied to monitor security threats. Results from simulations show that the monitoring accuracy of the proposed security system is superior to that of the traditional system.
To enhance the programmability and flexibility of network and service management, the Software-Defined Networking (SDN) paradigm is gaining growing attention by academia and industry. Motivated by its success in wired networks, researchers have recently started to embrace SDN towards developing next generation wireless networks such as Software-Defined Internet of Vehicles (SD-IoV). As the SD-IoV evolves, new security threats would emerge and demand attention. And since the core of the SD-IoV would be the control plane, it is highly vulnerable to Distributed Denial of Service (DDoS) Attacks. In this work, we investigate the impact of DDoS attacks on the controllers in a SD-IoV environment. Through experimental evaluations, we highlight the drastic effects DDoS attacks could have on a SD-IoV in terms of throughput and controller load. Our results could be a starting point to motivate further research in the area of SD-IoV security and would give deeper insights into the problems of DDoS attacks on SD-IoV.
Significant developments have taken place over the past few years in the area of vehicular communication systems in the ITS environment. It is vital that, in these environments, security is considered in design and implementation since compromised vulnerabilities in one vehicle can be propagated to other vehicles, especially given that V2X communication is through an ad-hoc type network. Recently, many standardisation organisations have been working on creating international standards related to vehicular communication security and the so-called Internet of Vehicles (IoV). This paper presents a discussion of current V2X communications cyber security issues and standardisation approaches being considered by standardisation bodies such as the ISO, the ITU, the IEEE, and the ETSI.
Internet of vehicles (IoV) is the evolution of conventional vehicle network (VANET), a recent domain attracting a large number of companies and researchers. It is an integration of three networks: an inter-vehicle network, an intra-vehicle network, and vehicular mobile Internet, in which the vehicle is considered as a smart object equipped with powerful multi-sensors platform, connectivity and communication technologies, enabling it to communicate with the world. The cooperative communication between vehicles and other devices causes diverse challenges in terms of: storage and computing capability, energy of vehicle and network's control and management. Security is very important aspect in IoV and it is required to protect connected cars from cybercrime and accidents. In this article, we propose a network model for IoV based on software Defined Network and Cloud Computing.
Crowd sensing is one of the core features of internet of vehicles, the use of internet of vehicles for crowd sensing is conducive to the rational allocation of sensing tasks. This paper mainly studies the problem of task allocation for crowd sensing in internet of vehicles, proposes a trajectory-based task allocation scheme for crowd sensing in internet of vehicles. With limited budget constraints, participants' trajectory is taken as an indicator of the spatiotemporal availability. Based on the solution idea of the minimal-cover problem, select the minimum number of participating vehicles to achieve the coverage of the target area.
Cloud-assisted Internet of Vehicles (IoV)which merges the advantages of both cloud computing and Internet of Things that can provide numerous online services, and bring lots of benefits and conveniences to the connected vehicles. However, the security and privacy issues such as confidentiality, access control and driver privacy may prevent it from being widely utilized for message dissemination. Existing attribute-based message encryption schemes still bring high computational cost to the lightweight vehicles. In this paper, we introduce a secure and privacy-preserving dissemination scheme for warning message in cloud-assisted IoV. Firstly, we adopt attribute-based encryption to protect the disseminated warning message, and present a verifiable encryption and decryption outsourcing construction to reduce the computational overhead on vehicles. Secondly, we present a conditional privacy preservation mechanism which utilizes anonymous identity-based signature technique to ensure anonymous vehicle authentication and message integrity checking, and also allows the trusted authority to trace the real identity of malicious vehicle. We further achieve batch verification to improve the authentication efficiency. The analysis indicate that our scheme gains more security properties and reduces the computational overhead on the vehicles.
In order to solve privacy protection problem in the Internet of Vehicles environment, a message authentication scheme based on proxy re-signature is proposed using elliptic curves, which realizes privacy protection by transforming the vehicle's signature of the message into the roadside unit's signature of the same message through the trusted center. And through the trusted center traceability, to achieve the condition of privacy protection, and the use of batch verification technology, greatly improve the efficiency of authentication. It is proved that the scheme satisfies unforgeability in ECDLP hard problem in the random oracle model. The efficiency analysis shows that the scheme meets the security and efficiency requirements of the Internet of Vehicles and has certain practical significance.