Visible to the public Biblio

Filters: Keyword is reputation system  [Clear All Filters]
2023-01-05
Bansal, Lakshya, Chaurasia, Shefali, Sabharwal, Munish, Vij, Mohit.  2022.  Blockchain Integration with end-to-end traceability in the Food Supply Chain. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1152—1156.
Food supply chain is a complex but necessary food production arrangement needed by the global community to maintain sustainability and food security. For the past few years, entities being a part of the food processing system have usually taken food supply chain for granted, they forget that just one disturbance in the chain can lead to poisoning, scarcity, or increased prices. This continually affects the vulnerable among society, including impoverished individuals and small restaurants/grocers. The food supply chain has been expanded across the globe involving many more entities, making the supply chain longer and more problematic making the traditional logistics pattern unable to match the expectations of customers. Food supply chains involve many challenges like lack of traceability and communication, supply of fraudulent food products and failure in monitoring warehouses. Therefore there is a need for a system that ensures authentic information about the product, a reliable trading mechanism. In this paper, we have proposed a comprehensive solution to make the supply chain consumer centric by using Blockchain. Blockchain technology in the food industry applies in a mindful and holistic manner to verify and certify the quality of food products by presenting authentic information about the products from the initial stages. The problem formulation, simulation and performance analysis are also discussed in this research work.
2021-06-28
Dahiya, Rohan, Jiang, Frank, Doss, Robin Ram.  2020.  A Feedback-Driven Lightweight Reputation Scheme for IoV. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1060–1068.
Most applications of Internet of Vehicles (IoVs) rely on collaboration between nodes. Therefore, false information flow in-between these nodes poses the challenging trust issue in rapidly moving IoV nodes. To resolve this issue, a number of mechanisms have been proposed in the literature for the detection of false information and establishment of trust in IoVs, most of which employ reputation scores as one of the important factors. However, it is critical to have a robust and consistent scheme that is suitable to aggregate a reputation score for each node based on the accuracy of the shared information. Such a mechanism has therefore been proposed in this paper. The proposed system utilises the results of any false message detection method to generate and share feedback in the network, this feedback is then collected and filtered to remove potentially malicious feedback in order to produce a dynamic reputation score for each node. The reputation system has been experimentally validated and proved to have high accuracy in the detection of malicious nodes sending false information and is robust or negligibly affected in the presence of spurious feedback.
2021-02-23
Mukhametov, D. R..  2020.  Self-organization of Network Communities via Blockchain Technology: Reputation Systems and Limits of Digital Democracy. 2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). :1—7.

The article is devoted to the analysis of the use of blockchain technology for self-organization of network communities. Network communities are characterized by the key role of trust in personal interactions, the need for repeated interactions, strong and weak ties within the network, social learning as the mechanism of self-organization. Therefore, in network communities reputation is the central component of social action, assessment of the situation, and formation of the expectations. The current proliferation of virtual network communities requires the development of appropriate technical infrastructure in the form of reputation systems - programs that provide calculation of network members reputation and organization of their cooperation and interaction. Traditional reputation systems have vulnerabilities in the field of information security and prevention of abusive behavior of agents. Overcoming these restrictions is possible through integration of reputation systems and blockchain technology that allows to increase transparency of reputation assessment system and prevent attempts of manipulation the system and social engineering. At the same time, the most promising is the use of blockchain-oracles to ensure communication between the algorithms of blockchain-based reputation system and the external information environment. The popularization of blockchain technology and its implementation in various spheres of social management, production control, economic exchange actualizes the problems of using digital technologies in political processes and their impact on the formation of digital authoritarianism, digital democracy and digital anarchism. The paper emphasizes that blockchain technology and reputation systems can equally benefit both the resources of government control and tools of democratization and public accountability to civil society or even practices of avoiding government. Therefore, it is important to take into account the problems of political institutionalization, path dependence and the creation of differentiated incentives as well as the technological aspects.

2021-02-10
Purohit, S., Calyam, P., Wang, S., Yempalla, R., Varghese, J..  2020.  DefenseChain: Consortium Blockchain for Cyber Threat Intelligence Sharing and Defense. 2020 2nd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS). :112—119.
Cloud-hosted applications are prone to targeted attacks such as DDoS, advanced persistent threats, cryptojacking which threaten service availability. Recently, methods for threat information sharing and defense require co-operation and trust between multiple domains/entities. There is a need for mechanisms that establish distributed trust to allow for such a collective defense. In this paper, we present a novel threat intelligence sharing and defense system, namely “DefenseChain”, to allow organizations to have incentive-based and trustworthy co-operation to mitigate the impact of cyber attacks. Our solution approach features a consortium Blockchain platform to obtain threat data and select suitable peers to help with attack detection and mitigation. We propose an economic model for creation and sustenance of the consortium with peers through a reputation estimation scheme that uses `Quality of Detection' and `Quality of Mitigation' metrics. Our evaluation experiments with DefenseChain implementation are performed on an Open Cloud testbed with Hyperledger Composer and in a simulation environment. Our results show that the DefenseChain system overall performs better than state-of-the-art decision making schemes in choosing the most appropriate detector and mitigator peers. In addition, we show that our DefenseChain achieves better performance trade-offs in terms of metrics such as detection time, mitigation time and attack reoccurence rate. Lastly, our validation results demonstrate that our DefenseChain can effectively identify rational/irrational service providers.
2020-10-29
Wang, Shi-wen, Xia, Hui.  2018.  A Reputation Management Framework for MANETs. 2018 IEEE Symposium on Privacy-Aware Computing (PAC). :119—120.
Resistance to malicious attacks and assessment of the trust value of nodes are important aspects of trusted mobile ad hoc networks (MANETs), and it is therefore necessary to establish an effective reputation management system. Previous studies have relied on the direct monitoring of nodes, recommendations from neighbors or a combination of these two methods to calculate a reputation value. However, these models can neither collect trust information effectively, nor cooperate to resist an attack, instead increasing the network load. To solve these problems, this paper proposes a novel reputation management framework that collects trust information and calculates the reputation value of nodes by selecting special nodes as management nodes. This framework can effectively identify malicious information and improve the credibility of a reputation value.
2020-10-19
Engoulou, Richard Gilles, Bellaiche, Martine, Halabi, Talal, Pierre, Samuel.  2019.  A Decentralized Reputation Management System for Securing the Internet of Vehicles. 2019 International Conference on Computing, Networking and Communications (ICNC). :900–904.
The evolution of the Internet of Vehicles (IoV) paradigm has recently attracted a lot of researchers and industries. Vehicular Ad Hoc Networks (VANET) is the networking model that lies at the heart of this technology. It enables the vehicles to exchange relevant information concerning road conditions and safety. However, ensuring communication security has been and still is one of the main challenges to vehicles' interconnection. To secure the interconnected vehicular system, many cryptography techniques, communication protocols, and certification and reputation-based security approaches were proposed. Nonetheless, some limitations are still present, preventing the practical implementation of such approaches. In this paper, we first define a set of locally-perceived behavioral reputation parameters that enable a distributed evaluation of vehicles' reputation. Then, we integrate these parameters into the design of a reputation management system to exclude malicious or faulty vehicles from the IoV network. Our system can help in the prevention of several attacks on the VANET environment such as Sybil and Denial of Service attacks, and can be implemented in a fully decentralized fashion.
2020-01-13
Li, Nan, Varadharajan, Vijay, Nepal, Surya.  2019.  Context-Aware Trust Management System for IoT Applications with Multiple Domains. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1138–1148.
The Internet of Things (IoT) provides connectivity between heterogeneous devices in different applications, such as smart wildlife, supply chain and traffic management. Trust management system (TMS) assesses the trustworthiness of service with respect to its quality. Under different context information, a service provider may be trusted in one context but not in another. The existing context-aware trust models usually store trust values under different contexts and search the closest (to a given context) record to evaluate the trustworthiness of a service. However, it is not suitable for distributed resource-constrained IoT devices which have small memory and low power. Reputation systems are applied in many trust models where trustor obtains recommendations from others. In context-based trust evaluation, it requires interactive queries to find relevant information from remote devices. The communication overhead and energy consumption are issues in low power networks like 6LoWPAN. In this paper, we propose a new context-aware trust model for lightweight IoT devices. The proposed model provides a trustworthiness overview of a service provider without storing past behavior records, that is, constant size storage. The proposed model allows a trustor to decide the significance of context items. This could result in distinctive decisions under the same trustworthiness record. We also show the performance of the proposed model under different attacks.
2019-11-18
Lu, Zhaojun, Wang, Qian, Qu, Gang, Liu, Zhenglin.  2018.  BARS: A Blockchain-Based Anonymous Reputation System for Trust Management in VANETs. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :98–103.
The public key infrastructure (PKI) based authentication protocol provides the basic security services for vehicular ad-hoc networks (VANETs). However, trust and privacy are still open issues due to the unique characteristics of vehicles. It is crucial for VANETs to prevent internal vehicles from broadcasting forged messages while simultaneously protecting the privacy of each vehicle against tracking attacks. In this paper, we propose a blockchain-based anonymous reputation system (BARS) to break the linkability between real identities and public keys to preserve privacy. The certificate and revocation transparency is implemented efficiently using two blockchains. We design a trust model to improve the trustworthiness of messages relying on the reputation of the sender based on both direct historical interactions and indirect opinions about the sender. Experiments are conducted to evaluate BARS in terms of security and performance and the results show that BARS is able to establish distributed trust management, while protecting the privacy of vehicles.
2019-02-08
Chen, Alexander B., Behl, Madhur, Goodall, Jonathan L..  2018.  Trust Me, My Neighbors Say It's Raining Outside: Ensuring Data Trustworthiness for Crowdsourced Weather Stations. Proceedings of the 5th Conference on Systems for Built Environments. :25-28.

Decision making in utilities, municipal, and energy companies depends on accurate and trustworthy weather information and predictions. Recently, crowdsourced personal weather stations (PWS) are being increasingly used to provide a higher spatial and temporal resolution of weather measurements. However, tools and methods to ensure the trustworthiness of the crowdsourced data in real-time are lacking. In this paper, we present a Reputation System for Crowdsourced Rainfall Networks (RSCRN) to assign trust scores to personal weather stations in a region. Using real PWS data from the Weather Underground service in the high flood risk region of Norfolk, Virginia, we evaluate the performance of the proposed RSCRN. The proposed method is able to converge to a confident trust score for a PWS within 10–20 observations after installation. Collectively, the results indicate that the trust score derived from the RSCRN can reflect the collective measure of trustworthiness to the PWS, ensuring both useful and trustworthy data for modeling and decision-making in the future.

2018-02-06
Nojoumian, M., Golchubian, A., Saputro, N., Akkaya, K..  2017.  Preventing Collusion between SDN Defenders Anc Attackers Using a Game Theoretical Approach. 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :802–807.

In this paper, a game-theoretical solution concept is utilized to tackle the collusion attack in a SDN-based framework. In our proposed setting, the defenders (i.e., switches) are incentivized not to collude with the attackers in a repeated-game setting that utilizes a reputation system. We first illustrate our model and its components. We then use a socio-rational approach to provide a new anti-collusion solution that shows cooperation with the SDN controller is always Nash Equilibrium due to the existence of a long-term utility function in our model.