Biblio
The power industrial control system is an important part of the national critical Information infrastructure. Its security is related to the national strategic security and has become an important target of cyber attacks. In order to solve the problem that the vulnerability detection technology of power industrial control system cannot meet the requirement of non-destructive, this paper proposes an industrial control vulnerability analysis technology combined with dynamic and static analysis technology. On this basis, an industrial control non-destructive vulnerability detection system is designed, and a simulation verification platform is built to verify the effectiveness of the industrial control non-destructive vulnerability detection system. These provide technical support for the safety protection research of the power industrial control system.
ISSN: 2693-289X
Advanced persistent threats (APT’s) are stealthy threat actors with the skills to gain covert control of the computer network for an extended period of time. They are the highest cyber attack risk factor for large companies and states. A successful attack via an APT can cost millions of dollars, can disrupt civil life and has the capabilities to do physical damage. APT groups are typically state-sponsored and are considered the most effective and skilled cyber attackers. Attacks of APT’s are executed in several stages as pointed out in the Lockheed Martin cyber kill chain (CKC). Each of these APT stages can potentially be identified as patterns in network traffic. Using the "APT-2020" dataset, that compiles the characteristics and stages of an APT, we carried out experiments on the detection of anomalous traffic for all APT stages. We compare several artificial intelligence models, like a stacked auto encoder, a recurrent neural network and a one class state vector machine and show significant improvements on detection in the data exfiltration stage. This dataset is the first to have a data exfiltration stage included to experiment on. According to APT-2020’s authors current models have the biggest challenge specific to this stage. We introduce a method to successfully detect data exfiltration by analyzing the payload of the network traffic flow. This flow based deep packet inspection approach improves detection compared to other state of the art methods.
A human-swarm cooperative system, which mixes multiple robots and a human supervisor to form a mission team, has been widely used for emergent scenarios such as criminal tracking and victim assistance. These scenarios are related to human safety and require a robot team to quickly transit from the current undergoing task into the new emergent task. This sudden mission change brings difficulty in robot motion adjustment and increases the risk of performance degradation of the swarm. Trust in human-human collaboration reflects a general expectation of the collaboration; based on the trust humans mutually adjust their behaviors for better teamwork. Inspired by this, in this research, a trust-aware reflective control (Trust-R), was developed for a robot swarm to understand the collaborative mission and calibrate its motions accordingly for better emergency response. Typical emergent tasks “transit between area inspection tasks”, “response to emergent target - car accident” in social security with eight fault-related situations were designed to simulate robot deployments. A human user study with 50 volunteers was conducted to model trust and assess swarm performance. Trust-R's effectiveness in supporting a robot team for emergency response was validated by improved task performance and increased trust scores.