Biblio
With the development of large scale integrated circuits, the functions of the IoT chips have been increasingly perfect. The verification work has become one of the most important aspects. On the one hand, an efficient verification platform can ensure the correctness of the design. On the other hand, it can shorten the chip design cycle and reduce the design cost. In this paper, based on a transmission protocol of the IoT node, we propose a verification method which combines simulation verification and FPGA-based prototype verification. We also constructed a system verification platform for the IoT smart node chip combining two kinds of verification above. We have simulated and verificatied the related functions of the node chip using this platform successfully. It has a great reference value.
Despite decades of research on software diversification, only address space layout randomization has seen widespread adoption. Code randomization, an effective defense against return-oriented programming exploits, has remained an academic exercise mainly due to i) the lack of a transparent and streamlined deployment model that does not disrupt existing software distribution norms, and ii) the inherent incompatibility of program variants with error reporting, whitelisting, patching, and other operations that rely on code uniformity. In this work we present compiler-assisted code randomization (CCR), a hybrid approach that relies on compiler-rewriter cooperation to enable fast and robust fine-grained code randomization on end-user systems, while maintaining compatibility with existing software distribution models. The main concept behind CCR is to augment binaries with a minimal set of transformation-assisting metadata, which i) facilitate rapid fine-grained code transformation at installation or load time, and ii) form the basis for reversing any applied code transformation when needed, to maintain compatibility with existing mechanisms that rely on referencing the original code. We have implemented a prototype of this approach by extending the LLVM compiler toolchain, and developing a simple binary rewriter that leverages the embedded metadata to generate randomized variants using basic block reordering. The results of our experimental evaluation demonstrate the feasibility and practicality of CCR, as on average it incurs a modest file size increase of 11.46% and a negligible runtime overhead of 0.28%, while it is compatible with link-time optimization and control flow integrity.
With the transition from IPv4 IPv6 protocol to improve network communications, there are concerns about devices and applications' security that must be dealt at the beginning of implementation or during its lifecycle. Automate the vulnerability assessment process reduces management overhead, enabling better management of risks and control of the vulnerabilities. Consequently, it reduces the effort needed for each test and it allows the increase of the frequency of application, improving time management to perform all the other complicated tasks necessary to support a secure network. There are several researchers involved in tests of vulnerability in IPv6 networks, exploiting addressing mechanisms, extension headers, fragmentation, tunnelling or dual-stack networks (using both IPv4 and IPv6 at the same time). Most existing tools use the programming languages C, Java, and Python instead of a language designed specifically to create a suite of tests, which reduces maintainability and extensibility of the tests. This paper presents a solution for IPv6 vulnerabilities scan tests, based on attack simulations, combining passive analysis (observing the manifestation of behaviours of the system under test) and an active one (stimulating the system to become symptomatic). Also, it describes a prototype that simulates and detects denial-of-service attacks on the ICMPv6 Protocol from IPv6. Also, a detailed report is created with the identified vulnerability and the possible existing solutions to mitigate such a gap, thus assisting the process of vulnerability management.
Augmented reality (AR) technologies, such as Microsoft's HoloLens head-mounted display and AR-enabled car windshields, are rapidly emerging. AR applications provide users with immersive virtual experiences by capturing input from a user's surroundings and overlaying virtual output on the user's perception of the real world. These applications enable users to interact with and perceive virtual content in fundamentally new ways. However, the immersive nature of AR applications raises serious security and privacy concerns. Prior work has focused primarily on input privacy risks stemming from applications with unrestricted access to sensor data. However, the risks associated with malicious or buggy AR output remain largely unexplored. For example, an AR windshield application could intentionally or accidentally obscure oncoming vehicles or safety-critical output of other AR applications. In this work, we address the fundamental challenge of securing AR output in the face of malicious or buggy applications. We design, prototype, and evaluate Arya, an AR platform that controls application output according to policies specified in a constrained yet expressive policy framework. In doing so, we identify and overcome numerous challenges in securing AR output.
Currently, when companies conduct risk analysis of own networks and systems, it is common to outsource risk analysis to third-party experts. At that time, the company passes the information used for risk analysis including confidential information such as network configuration to third-party expert. It raises the risk of leakage and abuse of confidential information. Therefore, a method of risk analysis by using secure computation without passing confidential information of company has been proposed. Although Liu's method have firstly achieved secure risk analysis method using multiparty computation and attack tree analysis, it has several problems to be practical. In this paper, improvement of secure risk analysis method is proposed. It can dynamically reduce compilation time, enhance scale of target network and system without increasing execution time. Experimental work is carried out by prototype implementation. As a result, we achieved improved performance in compile time and enhance scale of target with equivalent performance on execution time.
Currently, no major browser fully checks for TLS/SSL certificate revocations. This is largely due to the fact that the deployed mechanisms for disseminating revocations (CRLs, OCSP, OCSP Stapling, CRLSet, and OneCRL) are each either incomplete, insecure, inefficient, slow to update, not private, or some combination thereof. In this paper, we present CRLite, an efficient and easily-deployable system for proactively pushing all TLS certificate revocations to browsers. CRLite servers aggregate revocation information for all known, valid TLS certificates on the web, and store them in a space-efficient filter cascade data structure. Browsers periodically download and use this data to check for revocations of observed certificates in real-time. CRLite does not require any additional trust beyond the existing PKI, and it allows clients to adopt a fail-closed security posture even in the face of network errors or attacks that make revocation information temporarily unavailable. We present a prototype of name that processes TLS certificates gathered by Rapid7, the University of Michigan, and Google's Certificate Transparency on the server-side, with a Firefox extension on the client-side. Comparing CRLite to an idealized browser that performs correct CRL/OCSP checking, we show that CRLite reduces latency and eliminates privacy concerns. Moreover, CRLite has low bandwidth costs: it can represent all certificates with an initial download of 10 MB (less than 1 byte per revocation) followed by daily updates of 580 KB on average. Taken together, our results demonstrate that complete TLS/SSL revocation checking is within reach for all clients.
The paper suggests several techniques for computer network risk assessment based on Common Vulnerability Scoring System (CVSS) and attack modeling. Techniques use a set of integrated security metrics and consider input data from security information and event management (SIEM) systems. Risk assessment techniques differ according to the used input data. They allow to get risk assessment considering requirements to the accuracy and efficiency. Input data includes network characteristics, attacks, attacker characteristics, security events and countermeasures. The tool that implements these techniques is presented. Experiments demonstrate operation of the techniques for different security situations.
Kings Eye is a platform independent situational awareness prototype for smart devices. Platform independence is important as there are more and more soldiers bringing their own devices, with different operating systems, into the field. The concept of Bring Your Own Device (BYOD) is a low-cost approach to equipping soldiers with situational awareness tools and by this it is important to facilitate and evaluate such solutions.
The urgent task of the organization of confidential calculations in crucial objects of informatization on the basis of domestic TPM technologies (Trusted Platform Module) is considered. The corresponding recommendations and architectural concepts of the special hardware TPM module (Trusted Platform Module) which is built in a computing platform are proposed and realize a so-called ``root of trust''. As a result it gave the organization the confidential calculations on the basis of domestic electronic base.
Word representation is one of the basic word repressentation methods in natural language processing, which mapped a word into a dense real-valued vector space based on a hypothesis: words with similar context have similar meanings. Models like NNLM, C&W, CBOW, Skip-gram have been designed for word embeddings learning, and get widely used in many NLP tasks. However, these models assume that one word had only one semantics meaning which is contrary to the real language rules. In this paper we pro-pose a new word unit with multiple meanings and an algorithm to distinguish them by it's context. This new unit can be embedded in most language models and get series of efficient representations by learning variable embeddings. We evaluate a new model MCBOW that integrate CBOW with our word unit on word similarity evaluation task and some downstream experiments, the result indicated our new model can learn different meanings of a word and get a better result on some other tasks.
Named Data Networking (NDN), a clean-slate data oriented Internet architecture targeting on replacing IP, brings many potential benefits for content distribution. Real deployment of NDN is crucial to verify this new architecture and promote academic research, but work in this field is at an early stage. Due to the fundamental design paradigm difference between NDN and IP, Deploying NDN as IP overlay causes high overhead and inefficient transmission, typically in streaming applications. Aiming at achieving efficient NDN streaming distribution, this paper proposes a transitional architecture of NDN/IP hybrid network dubbed Centaur, which embodies both NDN's smartness, scalability and IP's transmission efficiency and deployment feasibility. In Centaur, the upper NDN module acts as the smart head while the lower IP module functions as the powerful feet. The head is intelligent in content retrieval and self-control, while the IP feet are able to transport large amount of media data faster than that if NDN directly overlaying on IP. To evaluate the performance of our proposal, we implement a real streaming prototype in ndnSIM and compare it with both NDN-Hippo and P2P under various experiment scenarios. The result shows that Centaur can achieve better load balance with lower overhead, which is close to the performance that ideal NDN can achieve. All of these validate that our proposal is a promising choice for the incremental and compatible deployment of NDN.
Fuzzy c-means algorithm is used to identity clusters of similar objects within a data set, while it is not directly applied to incomplete data. In this paper, we proposed a novel fuzzy c-means algorithm based on missing attribute interval size for the clustering of incomplete data. In the new algorithm, incomplete data set was transformed to interval data set according to the nearest neighbor rule. The missing attribute value was replaced by the corresponding interval median and the interval size was set as the additional property for the incomplete data to control the effect of interval size in clustering. Experiments on standard UCI data set show that our approach outperforms other clustering methods for incomplete data.
A novel short-time Fourier transform (STFT) domain adaptive filtering scheme is proposed that can be easily combined with nonlinear post filters such as residual echo or noise reduction in acoustic echo cancellation. Unlike normal STFT subband adaptive filters, which suffers from aliasing artifacts due to its poor prototype filter, our scheme achieves good accuracy by exploiting the relationship between the linear convolution and the poor prototype filter, i.e., the STFT window function. The effectiveness of our scheme was confirmed through the results of simulations conducted to compare it with conventional methods.
This paper reports the results and findings of a historical analysis of open source intelligence (OSINT) information (namely Twitter data) surrounding the events of the September 11, 2012 attack on the US Diplomatic mission in Benghazi, Libya. In addition to this historical analysis, two prototype capabilities were combined for a table top exercise to explore the effectiveness of using OSINT combined with a context aware handheld situational awareness framework and application to better inform potential responders as the events unfolded. Our experience shows that the ability to model sentiment, trends, and monitor keywords in streaming social media, coupled with the ability to share that information to edge operators can increase their ability to effectively respond to contingency operations as they unfold.