Song, Yangxu, Jiang, Frank, Ali Shah, Syed Wajid, Doss, Robin.
2022.
A New Zero-Trust Aided Smart Key Authentication Scheme in IoV. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :630–636.
With the development of 5G networking technology on the Internet of Vehicle (IoV), there are new opportunities for numerous cyber-attacks, such as in-vehicle attacks like hijacking occurrences and data theft. While numerous attempts have been made to protect against the potential attacks, there are still many unsolved problems such as developing a fine-grained access control system. This is reflected by the granularity of security as well as the related data that are hosted on these platforms. Among the most notable trends is the increased usage of smart devices, IoV, cloud services, emerging technologies aim at accessing, storing and processing data. Most popular authentication protocols rely on knowledge-factor for authentication that is infamously known to be vulnerable to subversions. Recently, the zero-trust framework has drawn huge attention; there is an urgent need to develop further the existing Continuous Authentication (CA) technique to achieve the zero-trustiness framework. In this paper, firstly, we develop the static authentication process and propose a secured protocol to generate the smart key for user to unlock the vehicle. Then, we proposed a novel and secure continuous authentication system for IoVs. We present the proof-of-concept of our CA scheme by building a prototype that leverages the commodity fingerprint sensors, NFC, and smartphone. Our evaluations in real-world settings demonstrate the appropriateness of CA scheme and security analysis of our proposed protocol for digital key suggests its enhanced security against the known attack-vector.
Chakraborty, Joymallya, Majumder, Suvodeep, Tu, Huy.
2022.
Fair-SSL: Building fair ML Software with less data. 2022 IEEE/ACM International Workshop on Equitable Data & Technology (FairWare). :1–8.
Ethical bias in machine learning models has become a matter of concern in the software engineering community. Most of the prior software engineering works concentrated on finding ethical bias in models rather than fixing it. After finding bias, the next step is mitigation. Prior researchers mainly tried to use supervised approaches to achieve fairness. However, in the real world, getting data with trustworthy ground truth is challenging and also ground truth can contain human bias. Semi-supervised learning is a technique where, incrementally, labeled data is used to generate pseudo-labels for the rest of data (and then all that data is used for model training). In this work, we apply four popular semi-supervised techniques as pseudo-labelers to create fair classification models. Our framework, Fair-SSL, takes a very small amount (10%) of labeled data as input and generates pseudo-labels for the unlabeled data. We then synthetically generate new data points to balance the training data based on class and protected attribute as proposed by Chakraborty et al. in FSE 2021. Finally, classification model is trained on the balanced pseudo-labeled data and validated on test data. After experimenting on ten datasets and three learners, we find that Fair-SSL achieves similar performance as three state-of-the-art bias mitigation algorithms. That said, the clear advantage of Fair-SSL is that it requires only 10% of the labeled training data. To the best of our knowledge, this is the first SE work where semi-supervised techniques are used to fight against ethical bias in SE ML models. To facilitate open science and replication, all our source code and datasets are publicly available at https://github.com/joymallyac/FairSSL. CCS CONCEPTS • Software and its engineering → Software creation and management; • Computing methodologies → Machine learning. ACM Reference Format: Joymallya Chakraborty, Suvodeep Majumder, and Huy Tu. 2022. Fair-SSL: Building fair ML Software with less data. In International Workshop on Equitable Data and Technology (FairWare ‘22), May 9, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3524491.3527305