Visible to the public Biblio

Found 478 results

Filters: Keyword is Big Data  [Clear All Filters]
2020-10-06
Dattana, Vishal, Gupta, Kishu, Kush, Ashwani.  2019.  A Probability based Model for Big Data Security in Smart City. 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC). :1—6.

Smart technologies at hand have facilitated generation and collection of huge volumes of data, on daily basis. It involves highly sensitive and diverse data like personal, organisational, environment, energy, transport and economic data. Data Analytics provide solution for various issues being faced by smart cities like crisis response, disaster resilience, emergence management, smart traffic management system etc.; it requires distribution of sensitive data among various entities within or outside the smart city,. Sharing of sensitive data creates a need for efficient usage of smart city data to provide smart applications and utility to the end users in a trustworthy and safe mode. This shared sensitive data if get leaked as a consequence can cause damage and severe risk to the city's resources. Fortification of critical data from unofficial disclosure is biggest issue for success of any project. Data Leakage Detection provides a set of tools and technology that can efficiently resolves the concerns related to smart city critical data. The paper, showcase an approach to detect the leakage which is caused intentionally or unintentionally. The model represents allotment of data objects between diverse agents using Bigraph. The objective is to make critical data secure by revealing the guilty agent who caused the data leakage.

Petrenko, S. A., Vorobieva, D. E..  2019.  Method of Ensuring Cyber Resilience of Digital Platforms Based on Catastrophe Theory. 2019 XXII International Conference on Soft Computing and Measurements (SCM)). :97—101.

This article presents the valuable experience and practical results of exploratory research by authors on the scientific problem of cyber-resilient (Cyber Resilience) critical information infrastructure in the previously unknown heterogeneous mass cyber attacks of attackers based on similarity invariants. It is essential that the results obtained significantly complement the well-known practices and recommendations of ISO 22301 (https://www.iso.org), MITER PR 15-1334 (www.mitre.org) and NIST SP 800-160 (www.nist.gov) in terms of developing quantitative metrics and cyber resistance measures. This allows you to open and formally present the ultimate law of the effectiveness of ensuring the cyber stability of modern systems of Industry 4.0. in the face of growing security threats.

2020-09-21
Ding, Hongfa, Peng, Changgen, Tian, Youliang, Xiang, Shuwen.  2019.  A Game Theoretical Analysis of Risk Adaptive Access Control for Privacy Preserving. 2019 International Conference on Networking and Network Applications (NaNA). :253–258.

More and more security and privacy issues are arising as new technologies, such as big data and cloud computing, are widely applied in nowadays. For decreasing the privacy breaches in access control system under opening and cross-domain environment. In this paper, we suggest a game and risk based access model for privacy preserving by employing Shannon information and game theory. After defining the notions of Privacy Risk and Privacy Violation Access, a high-level framework of game theoretical risk based access control is proposed. Further, we present formulas for estimating the risk value of access request and user, construct and analyze the game model of the proposed access control by using a multi-stage two player game. There exists sub-game perfect Nash equilibrium each stage in the risk based access control and it's suitable to protect the privacy by limiting the privacy violation access requests.

Xin, Yang, Qian, Zhenwei, Jiang, Rong, Song, Yang.  2019.  Trust Evaluation Strategy Based on Grey System Theory for Medical Big Data. 2019 IEEE International Conference on Computer Science and Educational Informatization (CSEI). :157–160.
The performance of the trust evaluation strategy depends on the accuracy and rationality of the trust evaluation weight system. Trust is a difficult to accurate measurement and quantitative cognition in the heart, the trust of the traditional evaluation method has a strong subjectivity and fuzziness and uncertainty. This paper uses the AHP method to determine the trust evaluation index weight, and combined with grey system theory to build trust gray evaluation model. The use of gray assessment based on the whitening weight function in the evaluation process reduces the impact of the problem that the evaluation result of the trust evaluation is not easy to accurately quantify when the decision fuzzy and the operating mechanism are uncertain.
2020-09-14
Ortiz Garcés, Ivan, Cazares, Maria Fernada, Andrade, Roberto Omar.  2019.  Detection of Phishing Attacks with Machine Learning Techniques in Cognitive Security Architecture. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :366–370.
The number of phishing attacks has increased in Latin America, exceeding the operational skills of cybersecurity analysts. The cognitive security application proposes the use of bigdata, machine learning, and data analytics to improve response times in attack detection. This paper presents an investigation about the analysis of anomalous behavior related with phishing web attacks and how machine learning techniques can be an option to face the problem. This analysis is made with the use of an contaminated data sets, and python tools for developing machine learning for detect phishing attacks through of the analysis of URLs to determinate if are good or bad URLs in base of specific characteristics of the URLs, with the goal of provide realtime information for take proactive decisions that minimize the impact of an attack.
2020-09-08
Ma, Zhaohui, Yang, Yan.  2019.  Optimization Strategy of Flow Table Storage Based on “Betweenness Centrality”. 2019 IEEE International Conference on Power Data Science (ICPDS). :76–79.
With the gradual progress of cloud computing, big data, network virtualization and other network technology. The traditional network architecture can no longer support this huge business. At this time, the clean slate team defined a new network architecture, SDN (Software Defined Network). It has brought about tremendous changes in the development of today's networks. The controller sends the flow table down to the switch, and the data flow is forwarded through matching flow table items. However, the current flow table resources of the SDN switch are very limited. Therefore, this paper studies the technology of the latest SDN Flow table optimization at home and abroad, proposes an efficient optimization scheme of Flow table item on the betweenness centrality through the main road selection algorithm, and realizes related applications by setting up experimental topology. Experiments show that this scheme can greatly reduce the number of flow table items of switches, especially the more hosts there are in the topology, the more obvious the experimental effect is. And the experiment proves that the optimization success rate is over 80%.
2020-08-28
He, Chengkang, Cui, Aijiao, Chang, Chip-Hong.  2019.  Identification of State Registers of FSM Through Full Scan by Data Analytics. 2019 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1—6.

Finite-state machine (FSM) is widely used as control unit in most digital designs. Many intellectual property protection and obfuscation techniques leverage on the exponential number of possible states and state transitions of large FSM to secure a physical design with the reason that it is challenging to retrieve the FSM design from its downstream design or physical implementation without knowledge of the design. In this paper, we postulate that this assumption may not be sustainable with big data analytics. We demonstrate by applying a data mining technique to analyze sufficiently large amount of data collected from a full scan design to identify its FSM state registers. An impact metric is introduced to discriminate FSM state registers from other registers. A decision tree algorithm is constructed from the scan data for the regression analysis of the dependency of other registers on a chosen register to deduce its impact. The registers with the greater impact are more likely to be the FSM state registers. The proposed scheme is applied on several complex designs from OpenCores. The experiment results show the feasibility of our scheme in correctly identifying most FSM state registers with a high hit rate for a large majority of the designs.

Hasanin, Tawfiq, Khoshgoftaar, Taghi M., Leevy, Joffrey L..  2019.  A Comparison of Performance Metrics with Severely Imbalanced Network Security Big Data. 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). :83—88.

Severe class imbalance between the majority and minority classes in large datasets can prejudice Machine Learning classifiers toward the majority class. Our work uniquely consolidates two case studies, each utilizing three learners implemented within an Apache Spark framework, six sampling methods, and five sampling distribution ratios to analyze the effect of severe class imbalance on big data analytics. We use three performance metrics to evaluate this study: Area Under the Receiver Operating Characteristic Curve, Area Under the Precision-Recall Curve, and Geometric Mean. In the first case study, models were trained on one dataset (POST) and tested on another (SlowlorisBig). In the second case study, the training and testing dataset roles were switched. Our comparison of performance metrics shows that Area Under the Precision-Recall Curve and Geometric Mean are sensitive to changes in the sampling distribution ratio, whereas Area Under the Receiver Operating Characteristic Curve is relatively unaffected. In addition, we demonstrate that when comparing sampling methods, borderline-SMOTE2 outperforms the other methods in the first case study, and Random Undersampling is the top performer in the second case study.

Zobaed, S.M., ahmad, sahan, Gottumukkala, Raju, Salehi, Mohsen Amini.  2019.  ClustCrypt: Privacy-Preserving Clustering of Unstructured Big Data in the Cloud. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :609—616.
Security and confidentiality of big data stored in the cloud are important concerns for many organizations to adopt cloud services. One common approach to address the concerns is client-side encryption where data is encrypted on the client machine before being stored in the cloud. Having encrypted data in the cloud, however, limits the ability of data clustering, which is a crucial part of many data analytics applications, such as search systems. To overcome the limitation, in this paper, we present an approach named ClustCrypt for efficient topic-based clustering of encrypted unstructured big data in the cloud. ClustCrypt dynamically estimates the optimal number of clusters based on the statistical characteristics of encrypted data. It also provides clustering approach for encrypted data. We deploy ClustCrypt within the context of a secure cloud-based semantic search system (S3BD). Experimental results obtained from evaluating ClustCrypt on three datasets demonstrate on average 60% improvement on clusters' coherency. ClustCrypt also decreases the search-time overhead by up to 78% and increases the accuracy of search results by up to 35%.
Yau, Yiu Chung, Khethavath, Praveen, Figueroa, Jose A..  2019.  Secure Pattern-Based Data Sensitivity Framework for Big Data in Healthcare. 2019 IEEE International Conference on Big Data, Cloud Computing, Data Science Engineering (BCD). :65—70.
With the exponential growth in the usage of electronic medical records (EMR), the amount of data generated by the healthcare industry has too increased exponentially. These large amounts of data, known as “Big Data” is mostly unstructured. Special big data analytics methods are required to process the information and retrieve information which is meaningful. As patient information in hospitals and other healthcare facilities become increasingly electronic, Big Data technologies are needed now more than ever to manage and understand this data. In addition, this information tends to be quite sensitive and needs a highly secure environment. However, current security algorithms are hard to be implemented because it would take a huge amount of time and resources. Security protocols in Big data are also not adequate in protecting sensitive information in the healthcare. As a result, the healthcare data is both heterogeneous and insecure. As a solution we propose the Secure Pattern-Based Data Sensitivity Framework (PBDSF), that uses machine learning mechanisms to identify the common set of attributes of patient data, data frequency, various patterns of codes used to identify specific conditions to secure sensitive information. The framework uses Hadoop and is built on Hadoop Distributed File System (HDFS) as a basis for our clusters of machines to process Big Data, and perform tasks such as identifying sensitive information in a huge amount of data and encrypting data that are identified to be sensitive.
Huang, Angus F.M., Chi-Wei, Yang, Tai, Hsiao-Chi, Chuan, Yang, Huang, Jay J.C., Liao, Yu-Han.  2019.  Suspicious Network Event Recognition Using Modified Stacking Ensemble Machine Learning. 2019 IEEE International Conference on Big Data (Big Data). :5873—5880.
This study aims to detect genuine suspicious events and false alarms within a dataset of network traffic alerts. The rapid development of cloud computing and artificial intelligence-oriented automatic services have enabled a large amount of data and information to be transmitted among network nodes. However, the amount of cyber-threats, cyberattacks, and network intrusions have increased in various domains of network environments. Based on the fields of data science and machine learning, this paper proposes a series of solutions involving data preprocessing, exploratory data analysis, new features creation, features selection, ensemble learning, models construction, and verification to identify suspicious network events. This paper proposes a modified form of stacking ensemble machine learning which includes AdaBoost, Neural Networks, Random Forest, LightGBM, and Extremely Randomised Trees (Extra Trees) to realise a high-performance classification. A suspicious network event recognition dataset for a security operations centre, which uses real network log observations from the 2019 IEEE BigData Cup Challenge, is used as an experimental dataset. This paper investigates the possibility of integrating big-data analytics, machine learning, and data science to improve intelligent cybersecurity.
Mulinka, Pavol, Casas, Pedro, Vanerio, Juan.  2019.  Continuous and Adaptive Learning over Big Streaming Data for Network Security. 2019 IEEE 8th International Conference on Cloud Networking (CloudNet). :1—4.

Continuous and adaptive learning is an effective learning approach when dealing with highly dynamic and changing scenarios, where concept drift often happens. In a continuous, stream or adaptive learning setup, new measurements arrive continuously and there are no boundaries for learning, meaning that the learning model has to decide how and when to (re)learn from these new data constantly. We address the problem of adaptive and continual learning for network security, building dynamic models to detect network attacks in real network traffic. The combination of fast and big network measurements data with the re-training paradigm of adaptive learning imposes complex challenges in terms of data processing speed, which we tackle by relying on big data platforms for parallel stream processing. We build and benchmark different adaptive learning models on top of a novel big data analytics platform for network traffic monitoring and analysis tasks, and show that high speed-up computations (as high as × 6) can be achieved by parallelizing off-the-shelf stream learning approaches.

Al-Odat, Zeyad A., Al-Qtiemat, Eman M., Khan, Samee U..  2019.  A Big Data Storage Scheme Based on Distributed Storage Locations and Multiple Authorizations. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :13—18.

This paper introduces a secured and distributed Big Data storage scheme with multiple authorizations. It divides the Big Data into small chunks and distributes them through multiple Cloud locations. The Shamir's Secret Sharing and Secure Hash Algorithm are employed to provide the security and authenticity of this work. The proposed methodology consists of two phases: the distribution and retrieving phases. The distribution phase comprises three operations of dividing, encrypting, and distribution. The retrieving phase performs collecting and verifying operations. To increase the security level, the encryption key is divided into secret shares using Shamir's Algorithm. Moreover, the Secure Hash Algorithm is used to verify the Big Data after retrieving from the Cloud. The experimental results show that the proposed design can reconstruct a distributed Big Data with good speed while conserving the security and authenticity properties.

Li, Peng, Min, Xiao-Cui.  2019.  Accurate Marking Method of Network Attacking Information Based on Big Data Analysis. 2019 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :228—231.

In the open network environment, the network offensive information is implanted in big data environment, so it is necessary to carry out accurate location marking of network offensive information, to realize network attack detection, and to implement the process of accurate location marking of network offensive information. Combined with big data analysis method, the location of network attack nodes is realized, but when network attacks cross in series, the performance of attack information tagging is not good. An accurate marking technique for network attack information is proposed based on big data fusion tracking recognition. The adaptive learning model combined with big data is used to mark and sample the network attack information, and the feature analysis model of attack information chain is designed by extracting the association rules. This paper classifies the data types of the network attack nodes, and improves the network attack detection ability by the task scheduling method of the network attack information nodes, and realizes the accurate marking of the network attacking information. Simulation results show that the proposed algorithm can effectively improve the accuracy of marking offensive information in open network environment, the efficiency of attack detection and the ability of intrusion prevention is improved, and it has good application value in the field of network security defense.

Zhou, Xiaojun, Lin, Ping, Li, Zhiyong, Wang, Yunpeng, Tan, Wei, Huang, Meng.  2019.  Security of Big Data Based on the Technology of Cloud Computing. 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :703—7033.
To solve the problem of big data security and privacy protection, and expound the concept of cloud computing, big data and the relationship between them, the existing security and privacy protection method characteristic and problems were studied. A reference model is proposed which is based on cloud platform. In this model the physical level, data layer, interface layer and application layer step by step in to implement the system security risk early warning and threat perception, this provides an effective solution for the research of big data security. At the same time, a future research direction that uses the blockchain to solve cloud security and privacy protection is also pointed out.
Malik, Vinita, Singh, Sukhdip.  2019.  Cloud, Big Data IoT: Risk Management. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). :258—262.
The heart of research pumps for analyzing risks in today's competitive business environment where big, massive computations are performed on interconnected devices pervasively. Advanced computing environments i.e. Cloud, big data and Internet of things are taken under consideration for finding and analyzing business risks developed from evolutionary, interoperable and digital devices communications with massive volume of data generated. Various risks in advanced computational environment have been identified in this research and are provided with risks mitigation strategies. We have also focused on how risk management affects these environments and how that effect can be mitigated for software and business quality improvement.
2020-08-24
Jeon, Joohyung, Kim, Junhui, Kim, Joongheon, Kim, Kwangsoo, Mohaisen, Aziz, Kim, Jong-Kook.  2019.  Privacy-Preserving Deep Learning Computation for Geo-Distributed Medical Big-Data Platforms. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks – Supplemental Volume (DSN-S). :3–4.
This paper proposes a distributed deep learning framework for privacy-preserving medical data training. In order to avoid patients' data leakage in medical platforms, the hidden layers in the deep learning framework are separated and where the first layer is kept in platform and others layers are kept in a centralized server. Whereas keeping the original patients' data in local platforms maintain their privacy, utilizing the server for subsequent layers improves learning performance by using all data from each platform during training.
Al-Odat, Zeyad A., Khan, Samee U..  2019.  Anonymous Privacy-Preserving Scheme for Big Data Over the Cloud. 2019 IEEE International Conference on Big Data (Big Data). :5711–5717.
This paper introduces an anonymous privacy-preserving scheme for big data over the cloud. The proposed design helps to enhance the encryption/decryption time of big data by utilizing the MapReduce framework. The Hadoop distributed file system and the secure hash algorithm are employed to provide the anonymity, security and efficiency requirements for the proposed scheme. The experimental results show a significant enhancement in the computational time of data encryption and decryption.
Yuan, Xu, Zhang, Jianing, Chen, Zhikui, Gao, Jing, Li, Peng.  2019.  Privacy-Preserving Deep Learning Models for Law Big Data Feature Learning. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :128–134.
Nowadays, a massive number of data, referred as big data, are being collected from social networks and Internet of Things (IoT), which are of tremendous value. Many deep learning-based methods made great progress in the extraction of knowledge of those data. However, the knowledge extraction of the law data poses vast challenges on the deep learning, since the law data usually contain the privacy information. In addition, the amount of law data of an institution is not large enough to well train a deep model. To solve these challenges, some privacy-preserving deep learning are proposed to capture knowledge of privacy data. In this paper, we review the emerging topics of deep learning for the feature learning of the privacy data. Then, we discuss the problems and the future trend in deep learning for privacy-preserving feature learning on law data.
Cuzzocrea, Alfredo, Damiani, Ernesto.  2019.  Making the Pedigree to Your Big Data Repository: Innovative Methods, Solutions, and Algorithms for Supporting Big Data Privacy in Distributed Settings via Data-Driven Paradigms. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:508–516.
Starting from our previous research where we in- troduced a general framework for supporting data-driven privacy-preserving big data management in distributed environments, such as emerging Cloud settings, in this paper we further and significantly extend our past research contributions, and provide several novel contributions that complement our previous work in the investigated research field. Our proposed framework can be viewed as an alternative to classical approaches where the privacy of big data is ensured via security-inspired protocols that check several (protocol) layers in order to achieve the desired privacy. Unfortunately, this injects considerable computational overheads in the overall process, thus introducing relevant challenges to be considered. Our approach instead tries to recognize the “pedigree” of suitable summary data representatives computed on top of the target big data repositories, hence avoiding computational overheads due to protocol checking. We also provide a relevant realization of the framework above, the so- called Data-dRIven aggregate-PROvenance privacy-preserving big Multidimensional data (DRIPROM) framework, which specifically considers multidimensional data as the case of interest. Extensions and discussion on main motivations and principles of our proposed research, two relevant case studies that clearly state the need-for and covered (related) properties of supporting privacy- preserving management and analytics of big data in modern distributed systems, and an experimental assessment and analysis of our proposed DRIPROM framework are the major results of this paper.
Long, Cao-Fang, Xiao, Heng.  2019.  Construction of Big Data Hyperchaotic Mixed Encryption Model for Mobile Network Privacy. 2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). :90–93.
Big data of mobile network privacy is vulnerable to clear text attack in the process of storage and mixed network information sharing, which leads to information leakage. Through the mixed encryption of data of mobile network privacy big data to improve the confidentiality and security of mobile network privacy big data, a mobile network privacy big data hybrid encryption algorithm based on hyperchaos theory is proposed. The hybrid encryption key of mobile network privacy big data is constructed by using hyperchaotic nonlinear mapping hybrid encryption technology. Combined with the feature distribution of mobile network privacy big data, the mixed encrypted public key is designed by using Logistic hyperchaotic arrangement method, and a hyperchaotic analytic cipher and block cipher are constructed by using Rossle chaotic mapping. The random piecewise linear combination method is used to design the coding and key of mobile network privacy big data. According to the two-dimensional coding characteristics of mobile network privacy big data in the key authorization protocol, the hybrid encryption and decryption key of mobile network privacy big data is designed, and the mixed encryption and decryption key of mobile network privacy big data is constructed, Realize the privacy of mobile network big data mixed encryption output and key design. The simulation results show that this method has good confidentiality and strong steganography performance, which improves the anti-attack ability of big data, which is used to encrypt the privacy of mobile network.
Liu, Hongling.  2019.  Research on Feasibility Path of Technology Supervision and Technology Protection in Big Data Environment. 2019 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :293–296.
Big data will bring revolutionary changes from life to thinking for society as a whole. At the same time, the massive data and potential value of big data are subject to many security risks. Aiming at the above problems, a data privacy protection model for big data platform is proposed. First, the data privacy protection model of big data for data owners is introduced in detail, including protocol design, logic design, complexity analysis and security analysis. Then, the query privacy protection model of big data for ordinary users is introduced in detail, including query protocol design and query mode design. Complexity analysis and safety analysis are performed. Finally, a stand-alone simulation experiment is built for the proposed privacy protection model. Experimental data is obtained and analyzed. The feasibility of the privacy protection model is verified.
Harris, Daniel R., Delcher, Chris.  2019.  bench4gis: Benchmarking Privacy-aware Geocoding with Open Big Data. 2019 IEEE International Conference on Big Data (Big Data). :4067–4070.
Geocoding, the process of translating addresses to geographic coordinates, is a relatively straight-forward and well-studied process, but limitations due to privacy concerns may restrict usage of geographic data. The impact of these limitations are further compounded by the scale of the data, and in turn, also limits viable geocoding strategies. For example, healthcare data is protected by patient privacy laws in addition to possible institutional regulations that restrict external transmission and sharing of data. This results in the implementation of “in-house” geocoding solutions where data is processed behind an organization's firewall; quality assurance for these implementations is problematic because sensitive data cannot be used to externally validate results. In this paper, we present our software framework called bench4gis which benchmarks privacy-aware geocoding solutions by leveraging open big data as surrogate data for quality assurance; the scale of open big data sets for address data can ensure that results are geographically meaningful for the locale of the implementing institution.
Dong, Kexiong, Luo, Weiwei, Pan, Xiaohua, Yin, Jianwei.  2019.  An Internet Medical Care-Oriented Service Security Open Platform. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :489–492.
As an inevitable trend of information development of hospitals, Internet hospitals provide a series of convenient online services for patients such as registration, consultation, queuing, payment and medicine pick-up. However, hospitals have to face huge challenges, and deploy an Internet medical care-oriented service security open platform to ensure the security of personal privacy data and avoid malicious attacks from the Internet, so as to prevent illegal stealing of medical data. The service security open platform provides visualized control for the unified and standardized connection process and data access process.
2020-08-17
Djemaiel, Yacine, Fessi, Boutheina A., Boudriga, Noureddine.  2019.  Using Temporal Conceptual Graphs and Neural Networks for Big Data-Based Attack Scenarios Reconstruction. 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :991–998.
The emergence of novel technologies and high speed networks has enabled a continually generation of huge volumes of data that should be stored and processed. These big data have allowed the emergence of new forms of complex attacks whose resolution represents a big challenge. Different methods and tools are developed to deal with this issue but definite detection is still needed since various features are not considered and tracing back an attack remains a timely activity. In this context, we propose an investigation framework that allows the reconstruction of complex attack scenarios based on huge volume of data. This framework used a temporal conceptual graph to represent the big data and the dependency between them in addition to the tracing back of the whole attack scenario. The selection of the most probable attack scenario is assisted by a developed decision model based on hybrid neural network that enables the real time classification of the possible attack scenarios using RBF networks and the convergence to the most potential attack scenario within the support of an Elman network. The efficiency of the proposed framework has been illustrated for the global attack reconstruction process targeting a smart city where a set of available services are involved.