Visible to the public Biblio

Found 478 results

Filters: Keyword is Big Data  [Clear All Filters]
2020-04-20
Liu, Kai-Cheng, Kuo, Chuan-Wei, Liao, Wen-Chiuan, Wang, Pang-Chieh.  2018.  Optimized Data de-Identification Using Multidimensional k-Anonymity. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1610–1614.
In the globalized knowledge economy, big data analytics have been widely applied in diverse areas. A critical issue in big data analysis on personal information is the possible leak of personal privacy. Therefore, it is necessary to have an anonymization-based de-identification method to avoid undesirable privacy leak. Such method can prevent published data form being traced back to personal privacy. Prior empirical researches have provided approaches to reduce privacy leak risk, e.g. Maximum Distance to Average Vector (MDAV), Condensation Approach and Differential Privacy. However, previous methods inevitably generate synthetic data of different sizes and is thus unsuitable for general use. To satisfy the need of general use, k-anonymity can be chosen as a privacy protection mechanism in the de-identification process to ensure the data not to be distorted, because k-anonymity is strong in both protecting privacy and preserving data authenticity. Accordingly, this study proposes an optimized multidimensional method for anonymizing data based on both the priority weight-adjusted method and the mean difference recommending tree method (MDR tree method). The results of this study reveal that this new method generate more reliable anonymous data and reduce the information loss rate.
Liu, Kai-Cheng, Kuo, Chuan-Wei, Liao, Wen-Chiuan, Wang, Pang-Chieh.  2018.  Optimized Data de-Identification Using Multidimensional k-Anonymity. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1610–1614.
In the globalized knowledge economy, big data analytics have been widely applied in diverse areas. A critical issue in big data analysis on personal information is the possible leak of personal privacy. Therefore, it is necessary to have an anonymization-based de-identification method to avoid undesirable privacy leak. Such method can prevent published data form being traced back to personal privacy. Prior empirical researches have provided approaches to reduce privacy leak risk, e.g. Maximum Distance to Average Vector (MDAV), Condensation Approach and Differential Privacy. However, previous methods inevitably generate synthetic data of different sizes and is thus unsuitable for general use. To satisfy the need of general use, k-anonymity can be chosen as a privacy protection mechanism in the de-identification process to ensure the data not to be distorted, because k-anonymity is strong in both protecting privacy and preserving data authenticity. Accordingly, this study proposes an optimized multidimensional method for anonymizing data based on both the priority weight-adjusted method and the mean difference recommending tree method (MDR tree method). The results of this study reveal that this new method generate more reliable anonymous data and reduce the information loss rate.
2020-04-03
Garigipati, Nagababu, Krishna, Reddy V.  2019.  A Study on Data Security and Query privacy in Cloud. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :337—341.

A lot of organizations need effective resolutions to record and evaluate the existing enormous volume of information. Cloud computing as a facilitator offers scalable resources and noteworthy economic assistances as the decreased operational expenditures. This model increases a wide set of security and privacy problems that have to be taken into reflexion. Multi-occupancy, loss of control, and confidence are the key issues in cloud computing situations. This paper considers the present know-hows and a comprehensive assortment of both previous and high-tech tasks on cloud security and confidentiality. The paradigm shift that supplements the usage of cloud computing is progressively enabling augmentation to safety and privacy contemplations linked with the different facades of cloud computing like multi-tenancy, reliance, loss of control and responsibility. So, cloud platforms that deal with big data that have sensitive information are necessary to use technical methods and structural precautions to circumvent data defence failures that might lead to vast and costly harms.

Gerl, Armin, Becher, Stefan.  2019.  Policy-Based De-Identification Test Framework. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:356—357.
Protecting privacy of individuals is a basic right, which has to be considered in our data-centered society in which new technologies emerge rapidly. To preserve the privacy of individuals de-identifying technologies have been developed including pseudonymization, personal privacy anonymization, and privacy models. Each having several variations with different properties and contexts which poses the challenge for the proper selection and application of de-identification methods. We tackle this challenge proposing a policy-based de-identification test framework for a systematic approach to experimenting and evaluation of various combinations of methods and their interplay. Evaluation of the experimental results regarding performance and utility is considered within the framework. We propose a domain-specific language, expressing the required complex configuration options, including data-set, policy generator, and various de-identification methods.
Calvert, Chad L., Khoshgoftaar, Taghi M..  2019.  Threshold Based Optimization of Performance Metrics with Severely Imbalanced Big Security Data. 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). :1328—1334.

Proper evaluation of classifier predictive models requires the selection of appropriate metrics to gauge the effectiveness of a model's performance. The Area Under the Receiver Operating Characteristic Curve (AUC) has become the de facto standard metric for evaluating this classifier performance. However, recent studies have suggested that AUC is not necessarily the best metric for all types of datasets, especially those in which there exists a high or severe level of class imbalance. There is a need to assess which specific metrics are most beneficial to evaluate the performance of highly imbalanced big data. In this work, we evaluate the performance of eight machine learning techniques on a severely imbalanced big dataset pertaining to the cyber security domain. We analyze the behavior of six different metrics to determine which provides the best representation of a model's predictive performance. We also evaluate the impact that adjusting the classification threshold has on our metrics. Our results find that the C4.5N decision tree is the optimal learner when evaluating all presented metrics for severely imbalanced Slow HTTP DoS attack data. Based on our results, we propose that the use of AUC alone as a primary metric for evaluating highly imbalanced big data may be ineffective, and the evaluation of metrics such as F-measure and Geometric mean can offer substantial insight into the true performance of a given model.

Kantarcioglu, Murat, Shaon, Fahad.  2019.  Securing Big Data in the Age of AI. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :218—220.

Increasingly organizations are collecting ever larger amounts of data to build complex data analytics, machine learning and AI models. Furthermore, the data needed for building such models may be unstructured (e.g., text, image, and video). Hence such data may be stored in different data management systems ranging from relational databases to newer NoSQL databases tailored for storing unstructured data. Furthermore, data scientists are increasingly using programming languages such as Python, R etc. to process data using many existing libraries. In some cases, the developed code will be automatically executed by the NoSQL system on the stored data. These developments indicate the need for a data security and privacy solution that can uniformly protect data stored in many different data management systems and enforce security policies even if sensitive data is processed using a data scientist submitted complex program. In this paper, we introduce our vision for building such a solution for protecting big data. Specifically, our proposed system system allows organizations to 1) enforce policies that control access to sensitive data, 2) keep necessary audit logs automatically for data governance and regulatory compliance, 3) sanitize and redact sensitive data on-the-fly based on the data sensitivity and AI model needs, 4) detect potentially unauthorized or anomalous access to sensitive data, 5) automatically create attribute-based access control policies based on data sensitivity and data type.

2020-03-18
Lin, Yongze, Zhang, Xinyuan, Xia, Liting, Ren, Yue, Li, Weimin.  2019.  A Hybrid Algorithm for Influence Maximization of Social Networks. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :427–431.
Influence Maximization is an important research content in the dissemination process of information and behavior in social networks. Because Hill Climbing and Greedy Algorithm have good dissemination effect on this topic, researchers have used it to solve this NP problem for a long time. These algorithms only consider the number of active nodes in each round, ignoring the characteristic that the influence will be accumulated, so its effect is still far from the optimal solution. Also, the time complexity of these algorithms is considerable. Aiming at the problem of Influence Maximization, this paper improves the traditional Hill Climbing and Greedy Algorithm. We propose a Hybrid Distribution Value Accumulation Algorithm for Influence Maximization, which has better activation effect than Hill Climbing and Greedy Algorithm. In the first stage of the algorithm, the region is numerically accumulating rapidly and is easy to activate through value-greed. Experiments are conducted on two data sets: the voting situation on Wikipedia and the transmission situation of Gnutella node-to-node file sharing network. Experimental results verify the efficiency of our methods.
Van, Hao, Nguyen, Huyen N., Hewett, Rattikorn, Dang, Tommy.  2019.  HackerNets: Visualizing Media Conversations on Internet of Things, Big Data, and Cybersecurity. 2019 IEEE International Conference on Big Data (Big Data). :3293–3302.
The giant network of Internet of Things establishes connections between smart devices and people, with protocols to collect and share data. While the data is expanding at a fast pace in this era of Big Data, there are growing concerns about security and privacy policies. In the current Internet of Things ecosystems, at the intersection of the Internet of Things, Big Data, and Cybersecurity lies the subject that attracts the most attention. In aiding users in getting an adequate understanding, this paper introduces HackerNets, an interactive visualization for emerging topics in the crossing of IoT, Big Data, and Cybersecurity over time. To demonstrate the effectiveness and usefulness of HackerNets, we apply and evaluate the technique on the dataset from the social media platform.
2020-03-16
Iuhasz, Gabriel, Petcu, Dana.  2019.  Perspectives on Anomaly and Event Detection in Exascale Systems. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :225–229.
The design and implementation of exascale system is nowadays an important challenge. Such a system is expected to combine HPC with Big Data methods and technologies to allow the execution of scientific workloads which are not tractable at this present time. In this paper we focus on an event and anomaly detection framework which is crucial in giving a global overview of a exascale system (which in turn is necessary for the successful implementation and exploitation of the system). We propose an architecture for such a framework and show how it can be used to handle failures during job execution.
Ullah, Faheem, Ali Babar, M..  2019.  QuickAdapt: Scalable Adaptation for Big Data Cyber Security Analytics. 2019 24th International Conference on Engineering of Complex Computer Systems (ICECCS). :81–86.
Big Data Cyber Security Analytics (BDCA) leverages big data technologies for collecting, storing, and analyzing a large volume of security events data to detect cyber-attacks. Accuracy and response time, being the most important quality concerns for BDCA, are impacted by changes in security events data. Whilst it is promising to adapt a BDCA system's architecture to the changes in security events data for optimizing accuracy and response time, it is important to consider large search space of architectural configurations. Searching a large space of configurations for potential adaptation incurs an overwhelming adaptation time, which may cancel the benefits of adaptation. We present an adaptation approach, QuickAdapt, to enable quick adaptation of a BDCA system. QuickAdapt uses descriptive statistics (e.g., mean and variance) of security events data and fuzzy rules to (re) compose a system with a set of components to ensure optimal accuracy and response time. We have evaluated QuickAdapt for a distributed BDCA system using four datasets. Our evaluation shows that on average QuickAdapt reduces adaptation time by 105× with a competitive adaptation accuracy of 70% as compared to an existing solution.
Zhang, Gang, Qiu, Xiaofeng, Gao, Yang.  2019.  Software Defined Security Architecture with Deep Learning-Based Network Anomaly Detection Module. 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN). :784–788.

With the development of the Internet, the network attack technology has undergone tremendous changes. The forms of network attack and defense have also changed, which are features in attacks are becoming more diverse, attacks are more widespread and traditional security protection methods are invalid. In recent years, with the development of software defined security, network anomaly detection technology and big data technology, these challenges have been effectively addressed. This paper proposes a data-driven software defined security architecture with core features including data-driven orchestration engine, scalable network anomaly detection module and security data platform. Based on the construction of the analysis layer in the security data platform, real-time online detection of network data can be realized by integrating network anomaly detection module and security data platform under software defined security architecture. Then, data-driven security business orchestration can be realized to achieve efficient, real-time and dynamic response to detected anomalies. Meanwhile, this paper designs a deep learning-based HTTP anomaly detection algorithm module and integrates it with data-driven software defined security architecture so that demonstrating the flow of the whole system.

2020-03-12
Gawanmeh, Amjad, Parvin, Sazia, Venkatraman, Sitalakshmi, de Souza-Daw, Tony, Kang, James, Kaspi, Samuel, Jackson, Joanna.  2019.  A Framework for Integrating Big Data Security Into Agricultural Supply Chain. 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService). :191–194.

In the era of mass agriculture to keep up with the increasing demand for food production, advanced monitoring systems are required in order to handle several challenges such as perishable products, food waste, unpredictable supply variations and stringent food safety and sustainability requirements. The evolution of Internet of Things have provided means for collecting, processing, and communicating data associated with agricultural processes. This have opened several opportunities to sustain, improve productivity and reduce waste in every step in the food supply chain system. On the hand, this resulted in several new challenges, such as, the security of the data, recording and representation of data, providing real time control, reliability of the system, and dealing with big data. This paper proposes an architecture for security of big data in the agricultural supply chain management system. This can help in reducing food waste, increasing the reliability of the supply chain, and enhance the performance of the food supply chain system.

2020-03-02
Yoshikawa, Masaya, Nozaki, Yusuke.  2019.  Side-Channel Analysis for Searchable Encryption System and Its Security Evaluation. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :465–469.

Searchable encryption will become more important as medical services intensify their use of big data and artificial intelligence. To use searchable encryption safely, the resistance of terminals with embedded searchable encryption to illegal attacks (tamper resistance) is extremely important. This study proposes a searchable encryption system embedded in terminals and evaluate the tamper resistance of the proposed system. This study also proposes attack scenarios and quantitatively evaluates the tamper resistance of the proposed system by performing experiments following the proposed attack scenarios.

Takemoto, Shu, Nozaki, Yusuke, Yoshikawa, Masaya.  2019.  Statistical Power Analysis for IoT Device Oriented Encryption with Glitch Canceller. 2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA). :73–76.

Big data which is collected by IoT devices is utilized in various businesses. For security and privacy, some data must be encrypted. IoT devices for encryption require not only to tamper resistance but also low latency and low power. PRINCE is one of the lowest latency cryptography. A glitch canceller reduces power consumption, although it affects tamper resistance. Therefore, this study evaluates the tamper resistance of dedicated hardware with glitch canceller for PRINCE by statistical power analysis and T-test. The evaluation experiments in this study performed on field-programmable gate array (FPGA), and the results revealed the vulnerability of dedicated hardware implementation with glitch canceller.

2020-02-18
Chaturvedi, Shilpa, Simmhan, Yogesh.  2019.  Toward Resilient Stream Processing on Clouds Using Moving Target Defense. 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC). :134–142.
Big data platforms have grown popular for real-time stream processing on distributed clusters and clouds. However, execution of sensitive streaming applications on shared computing resources increases their vulnerabilities, and may lead to data leaks and injection of spurious logic that can compromise these applications. Here, we adopt Moving Target Defense (MTD) techniques into Fast Data platforms, and propose MTD strategies by which we can mitigate these attacks. Our strategies target the platform, application and data layers, which make these reusable, rather than the OS, virtual machine, or hardware layers, which are environment specific. We use Apache Storm as the canonical distributed stream processing platform for designing our MTD strategies, and offer a preliminary evaluation that indicates the feasibility and evaluates the performance overheads.
Talluri, Sacheendra, Iosup, Alexandru.  2019.  Efficient Estimation of Read Density When Caching for Big Data Processing. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :502–507.

Big data processing systems are becoming increasingly more present in cloud workloads. Consequently, they are starting to incorporate more sophisticated mechanisms from traditional database and distributed systems. We focus in this work on the use of caching policies, which for big data raise important new challenges. Not only they must respond to new variants of the trade-off between hit rate, response time, and the space consumed by the cache, but they must do so at possibly higher volume and velocity than web and database workloads. Previous caching policies have not been tested experimentally with big data workloads. We address these challenges in this work. We propose the Read Density family of policies, which is a principled approach to quantify the utility of cached objects through a family of utility functions that depend on the frequency of reads of an object. We further design the Approximate Histogram, which is a policy-based technique based on an array of counters. This technique promises to achieve runtime-space efficient computation of the metric required by the cache policy. We evaluate through trace-based simulation the caching policies from the Read Density family, and compare them with over ten state-of-the-art alternatives. We use two workload traces representative for big data processing, collected from commercial Spark and MapReduce deployments. While we achieve comparable performance to the state-of-art with less parameters, meaningful performance improvement for big data workloads remain elusive.

2020-02-17
Jia, Zhuosheng, Han, Zhen.  2019.  Research and Analysis of User Behavior Fingerprint on Security Situational Awareness Based on DNS Log. 2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC). :1–4.

Before accessing Internet websites or applications, network users first ask the Domain Name System (DNS) for the corresponding IP address, and then the user's browser or application accesses the required resources through the IP address. The server log of DNS keeps records of all users' requesting queries. This paper analyzes the user network accessing behavior by analyzing network DNS log in campus, constructing a behavior fingerprint model for each user. Different users and even same user's fingerprints in different periods can be used to determine whether the user's access is abnormal or safe, whether it is infected with malicious code. After detecting the behavior of abnormal user accessing, preventing the spread of viruses, Trojans, bots and attacks is made possible, which further assists the protection of users' network access security through corresponding techniques. Finally, analysis of user behavior fingerprints of campus network access is conducted.

Yin, Mingyong, Wang, Qixu, Cao, Mingsheng.  2019.  An Attack Vector Evaluation Method for Smart City Security Protection. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–7.

In the network security risk assessment on critical information infrastructure of smart city, to describe attack vectors for predicting possible initial access is a challenging task. In this paper, an attack vector evaluation model based on weakness, path and action is proposed, and the formal representation and quantitative evaluation method are given. This method can support the assessment of attack vectors based on known and unknown weakness through combination of depend conditions. In addition, defense factors are also introduced, an attack vector evaluation model of integrated defense is proposed, and an application example of the model is given. The research work in this paper can provide a reference for the vulnerability assessment of attack vector.

Luntovskyy, Andriy, Globa, Larysa.  2019.  Performance, Reliability and Scalability for IoT. 2019 International Conference on Information and Digital Technologies (IDT). :316–321.
So-called IoT, based on use of enabling technologies like 5G, Wi-Fi, BT, NFC, RFID, IPv6 as well as being widely applied for sensor networks, robots, Wearable and Cyber-PHY, invades rapidly to our every day. There are a lot of apps and software platforms to IoT support. However, a most important problem of QoS optimization, which lays in Performance, Reliability and Scalability for IoT, is not yet solved. The extended Internet of the future needs these solutions based on the cooperation between fog and clouds with delegating of the analytics blocks via agents, adaptive interfaces and protocols. The next problem is as follows: IoT can generate large arrays of unmanaged, weakly-structured, and non-configured data of various types, known as "Big Data". The given papers deals with the both problems. A special problem is Security and Privacy in potentially "dangerous" IoTscenarios. Anyway, this subject needs as special discussion for risks evaluation and cooperative intrusion detection. Some advanced approaches for optimization of Performance, Reliability and Scalability for IoT-solutions are offered within the paper. The paper discusses the Best Practises and Case Studies aimed to solution of the established problems.
Hadar, Ethan, Hassanzadeh, Amin.  2019.  Big Data Analytics on Cyber Attack Graphs for Prioritizing Agile Security Requirements. 2019 IEEE 27th International Requirements Engineering Conference (RE). :330–339.

In enterprise environments, the amount of managed assets and vulnerabilities that can be exploited is staggering. Hackers' lateral movements between such assets generate a complex big data graph, that contains potential hacking paths. In this vision paper, we enumerate risk-reduction security requirements in large scale environments, then present the Agile Security methodology and technologies for detection, modeling, and constant prioritization of security requirements, agile style. Agile Security models different types of security requirements into the context of an attack graph, containing business process targets and critical assets identification, configuration items, and possible impacts of cyber-attacks. By simulating and analyzing virtual adversary attack paths toward cardinal assets, Agile Security examines the business impact on business processes and prioritizes surgical requirements. Thus, handling these requirements backlog that are constantly evaluated as an outcome of employing Agile Security, gradually increases system hardening, reduces business risks and informs the IT service desk or Security Operation Center what remediation action to perform next. Once remediated, Agile Security constantly recomputes residual risk, assessing risk increase by threat intelligence or infrastructure changes versus defender's remediation actions in order to drive overall attack surface reduction.

Li, Zhifeng, Li, Yintao, Lin, Peng.  2019.  The Security Evaluation of Big Data Research for Smart Grid. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :1055–1059.

The technological development of the energy sector also produced complex data. In this study, the relationship between smart grid and big data approaches have been investigated. After analyzing which areas of the smart grid system use big data technologies and technologies, big data technologies for detecting smart grid attacks have received attention. Big data analytics can produce efficient solutions and it is especially important to choose which algorithms and metrics to use. For this reason, an application prototype has been proposed that uses a big data method to detect attacks on the smart grid. The algorithm with high accuracy was determined to be 92% for random forests and 87% for decision trees.

2020-02-10
Lee, JoonYoung, Kim, MyeongHyun, Yu, SungJin, Park, KiSung, Park, YoungHo.  2019.  A Secure Multi-Factor Remote User Authentication Scheme for Cloud-IoT Applications. 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1–2.
With the development of internet of things (IoT) and communication technology, the sensors and embedded devices collect a large amount of data and handle it. However, IoT environment cannot efficiently treat the big data and is vulnerable to various attacks because IoT is comprised of resource limited devices and provides a service through a open channel. In 2018, Sharma and Kalra proposed a lightweight multi-factor authentication protocol for cloud-IoT environment to overcome this problems. We demonstrate that Sharma and Kalra's scheme is vulnerable to identity and password guessing, replay and session key disclosure attacks. We also propose a secure multifactor authentication protocol to resolve the security problems of Sharma and Kalra's scheme, and then we analyze the security using informal analysis and compare the performance with Sharma and Kalra's scheme. The proposed scheme can be applied to real cloud-IoT environment securely.
2020-01-27
Salamai, Abdullah, Hussain, Omar, Saberi, Morteza.  2019.  Decision Support System for Risk Assessment Using Fuzzy Inference in Supply Chain Big Data. 2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD IS). :248–253.

Currently, organisations find it difficult to design a Decision Support System (DSS) that can predict various operational risks, such as financial and quality issues, with operational risks responsible for significant economic losses and damage to an organisation's reputation in the market. This paper proposes a new DSS for risk assessment, called the Fuzzy Inference DSS (FIDSS) mechanism, which uses fuzzy inference methods based on an organisation's big data collection. It includes the Emerging Association Patterns (EAP) technique that identifies the important features of each risk event. Then, the Mamdani fuzzy inference technique and several membership functions are evaluated using the firm's data sources. The FIDSS mechanism can enhance an organisation's decision-making processes by quantifying the severity of a risk as low, medium or high. When it automatically predicts a medium or high level, it assists organisations in taking further actions that reduce this severity level.

Shang, Chengya, Bao, Xianqiang, Fu, Lijun, Xia, Li, Xu, Xinghua, Xu, Chengcheng.  2019.  A Novel Key-Value Based Real-Time Data Management Framework for Ship Integrated Power Cyber-Physical System. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :854–858.
The new generation ship integrated power system (IPS) realizes high level informatization for various physical equipments, and gradually develops to a cyber-physical system (CPS). The future trend is collecting ship big data to achieve data-driven intelligence for IPS. However, traditional relational data management framework becomes inefficient to handle the real-time data processing in ship integrated power cyber-physics system. In order to process the large-scale real-time data that collected from numerous sensors by field bus of IPS devices within acceptable latency, especially for handling the semi-structured and non-structured data. This paper proposes a novel key-value data model based real-time data management framework, which enables batch processing and distributed deployment to acquire time-efficiency as well as system scalable. We implement a real-time data management prototype system based on an open source in-memory key-value store. Finally, the evaluation results from the prototype verify the advantages of novel framework compared with traditional solution.
2020-01-21
Gao, Jiaqiong, Wang, Tao.  2019.  Research on the IPv6 Technical Defects and Countermeasures. 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA). :165–170.
The current global Internet USES the TCP/IP protocol cluster, the current version is IPv4. The IPv4 is with 32-bit addresses, the maximum number of computers connected to the Internet in the world is 232. With the development of Internet of things, big data and cloud storage and other technologies, the limited address space defined by IPv4 has been exhausted. To expand the address space, the IETF designed the next generation IPv6 to replace IPv4. IPv6 using a 128-bit address length that provides almost unlimited addresses. However, with the development and application of the Internet of things, big data and cloud storage, IPv6 has some shortcomings in its addressing structure design; security and network compatibility, These technologies are gradually applied in recent years, the continuous development of new technologies application show that the IPv6 address structure design ideas have some fatal defects. This paper proposed a route to upgrade the original IPv4 by studying on the structure of IPv6 "spliced address", and point out the defects in the design of IPv6 interface ID and the potential problems such as security holes.