Biblio
As a plethora of wearable devices are being introduced, significant concerns exist on the privacy and security of personal data stored on these devices. Expanding on recent works of using electrocardiogram (ECG) as a modality for biometric authentication, in this work, we investigate the possibility of using personal ECG signals as the individually unique source for physical unclonable function (PUF), which eventually can be used as the key for encryption and decryption engines. We present new signal processing and machine learning algorithms that learn and extract maximally different ECG features for different individuals and minimally different ECG features for the same individual over time. Experimental results with a large 741-subject in-house ECG database show that the distributions of the intra-subject (same person) Hamming distance of extracted ECG features and the inter-subject Hamming distance have minimal overlap. 256-b random numbers generated from the ECG features of 648 (out of 741) subjects pass the NIST randomness tests.
The majority of applications use a prompt for a username and password. Passwords are recommended to be unique, long, complex, alphanumeric and non-repetitive. These reasons that make passwords secure may prove to be a point of weakness. The complexity of the password provides a challenge for a user and they may choose to record it. This compromises the security of the password and takes away its advantage. An alternate method of security is Keystroke Biometrics. This approach uses the natural typing pattern of a user for authentication. This paper proposes a new method for reducing error rates and creating a robust technique. The new method makes use of multiple sensors to obtain information about a user. An artificial neural network is used to model a user's behavior as well as for retraining the system. An alternate user verification mechanism is used in case a user is unable to match their typing pattern.
Free-text keystroke authentication has been demonstrated to be a promising behavioral biometric. But unlike physiological traits such as fingerprints, in free-text keystroke authentication, there is no natural way to identify what makes a sample. It remains an open problem as to how much keystroke data are necessary for achieving acceptable authentication performance. Using public datasets and two existing algorithms, we conduct two experiments to investigate the effect of the reference profile size and test sample size on False Alarm Rate (FAR) and Imposter Pass Rate (IPR). We find that (1) larger reference profiles will drive down both IPR and FAR values, provided that the test samples are large enough, and (2) larger test samples have no obvious effect on IPR, regardless of the reference profile size. We discuss the practical implication of our findings.
It is accepted that the way a person types on a keyboard contains timing patterns, which can be used to classify him/her, is known as keystroke dynamics. Keystroke dynamics is a behavioural biometric modality, whose performances, however, are worse than morphological modalities such as fingerprint, iris recognition or face recognition. To cope with this, we propose to combine keystroke dynamics with soft biometrics. Soft biometrics refers to biometric characteristics that are not sufficient to authenticate a user (e.g. height, gender, skin/eye/hair colour). Concerning keystroke dynamics, three soft categories are considered: gender, age and handedness. We present different methods to combine the results of a classical keystroke dynamics system with such soft criteria. By applying simple sum and multiply rules, our experiments suggest that the combination approach performs better than the classification approach with best result of 5.41% of equal error rate. The efficiency of our approaches is illustrated on a public database.
In this paper we study keystroke dynamics as an authentication mechanism for touch screen based devices. The authentication process decides whether the identity of a given person is accepted or rejected. This can be easily implemented by using a two-class classifier which operates with the help of positive samples (belonging to the authentic person) and negative ones. However, collecting negative samples is not always a viable option. In such cases a one-class classification algorithm can be used to characterize the target class and distinguish it from the outliers. We implemented an authentication test-framework that is capable of working with both one-class and two-class classification algorithms. The framework was evaluated on our dataset containing keystroke samples from 42 users, collected from touch screen-based Android devices. Experimental results yield an Equal Error Rate (EER) of 3% (two-class) and 7% (one-class) respectively.
In this research, we focus on context independent continuous authentication that reacts on every separate action performed by a user. The experimental data was collected in a complete uncontrolled condition from 53 users by using our data collection software. In our analysis, we considered both keystroke and mouse usage behaviour patterns to prevent a situation where an attacker avoids detection by restricting to one input device because the continuous authentication system only checks the other input device. The best result obtained from this research is that for 47 bio-metric subjects we have on average 275 actions required to detect an imposter where these biometric subjects are never locked out from the system.
Keystroke dynamics is a form of behavioral biometrics that can be used for continuous authentication of computer users. Many classifiers have been proposed for the analysis of acquired user patterns and verification of users at computer terminals. The underlying machine learning methods that use Gaussian density estimator for outlier detection typically assume that the digraph patterns in keystroke data are generated from a single Gaussian distribution. In this paper, we relax this assumption by allowing digraphs to fit more than one distribution via the Gaussian Mixture Model (GMM). We have conducted an experiment with a public data set collected in a controlled environment. Out of 30 users with dynamic text, we obtain 0.08% Equal Error Rate (EER) with 2 components by using GMM, while pure Gaussian yields 1.3% EER for the same data set (an improvement of EER by 93.8%). Our results show that GMM can recognize keystroke dynamics more precisely and authenticate users with higher confidence level.
This paper analyzes score normalization for keystroke dynamics authentication systems. Previous studies have shown that the performance of behavioral biometric recognition systems (e.g. voice and signature) can be largely improved with score normalization and target-dependent techniques. The main objective of this work is twofold: i) to analyze the effects of different thresholding techniques in 4 different keystroke dynamics recognition systems for real operational scenarios; and ii) to improve the performance of keystroke dynamics on the basis of target-dependent score normalization techniques. The experiments included in this work are worked out over the keystroke pattern of 114 users from two different publicly available databases. The experiments show that there is large room for improvements in keystroke dynamic systems. The results suggest that score normalization techniques can be used to improve the performance of keystroke dynamics systems in more than 20%. These results encourage researchers to explore this research line to further improve the performance of these systems in real operational environments.
Biometric systems have been applied to improve the security of several computational systems. These systems analyse physiological or behavioural features obtained from the users in order to perform authentication. Biometric features should ideally meet a number of requirements, including permanence. In biometrics, permanence means that the analysed biometric feature will not change over time. However, recent studies have shown that this is not the case for several biometric modalities. Adaptive biometric systems deal with this issue by adapting the user model over time. Some algorithms for adaptive biometrics have been investigated and compared in the literature. In machine learning, several studies show that the combination of individual techniques in ensembles may lead to more accurate and stable decision models. This paper investigates the usage of some ensemble approaches to combine the output of current adaptive algorithms for biometrics. The experiments are carried out on keystroke dynamics, a biometric modality known to be subject to change over time.
Summary form only given. Aadhaar, India's Unique Identity Project, has become the largest biometric identity system in the world, already covering more than 920 million people. Building such a massive system required significant design thinking, aligning to the core strategy, and building a technology platform that is scalable to meet the project's objective. Entire technology architecture behind Aadhaar is based on principles of openness, linear scalability, strong security, and most importantly vendor neutrality. All application components are built using open source components and open standards. Aadhaar system currently runs across two of the data centers within India managed by UIDAI and handles 1 million enrollments a day and at the peak doing about 900 trillion biometric matches a day. Current system has about 8 PB (8000 Terabytes) of raw data. Aadhaar Authentication service, which requires sub-second response time, is already live and can handle more than 100 million authentications a day. In this talk, the speaker, who has been the Chief Architect of Aadhaar since inception, shares his experience of building the system.
Protecting the privacy of user-identification data is fundamental to protect the information systems from attacks and vulnerabilities. Providing access to such data only to the limited and legitimate users is the key motivation for `Biometrics'. In `Biometric Systems' confirming a user's claim of his/her identity reliably, is more important than focusing on `what he/she really possesses' or `what he/she remembers'. In this paper the use of face image for biometric access is proposed using two multistage face recognition algorithms that employ biometric facial features to validate the user's claim. The proposed algorithms use standard algorithms and classifiers such as EigenFaces, PCA and LDA in stages. Performance evaluation of both proposed algorithms is carried out using two standard datasets, the Extended Yale database and AT&T database. Results using the proposed multi-stage algorithms are better than those using other standard algorithms. Current limitations and possible applications of the proposed algorithms are also discussed along, with further scope of making these robust to pose, illumination and noise variations.
Hash based biometric template protection schemes (BTPS), such as fuzzy commitment, fuzzy vault, and secure sketch, address the privacy leakage concern on the plain biometric template storage in a database through using cryptographic hash calculation for template verification. However, cryptographic hashes have only computational security whose being cracked shall leak the biometric feature in these BTPS; and furthermore, existing BTPS are rarely able to detect during a verification process whether a probe template has been leaked from the database or not (i.e., being used by an imposter or a genuine user). In this paper we tailor the "honeywords" idea, which was proposed to detect the hashed password cracking, to enable the detectability of biometric template database leakage. However, unlike passwords, biometric features encoded in a template cannot be renewed after being cracked and thus not straightforwardly able to be protected by the honeyword idea. To enable the honeyword idea on biometrics, diversifiability (and thus renewability) is required on the biometric features. We propose to use BTPS for his purpose in this paper and present a machine learning based protected template generation protocol to ensure the best anonymity of the generated sugar template (from a user's genuine biometric feature) among other honey ones (from synthesized biometric features).
Integrity of image data plays an important role in data communication. Image data contain confidential information so it is very important to protect data from intruder. When data is transmitted through the network, there may be possibility that data may be get lost or damaged. Existing system does not provide all functionality for securing image during transmission. i.e image compression, encryption and user authentication. In this paper hybrid cryptosystem is proposed in which biometric fingerprint is used for key generation which is further useful for encryption purpose. Secret fragment visible mosaic image method is used for secure transmission of image. For reducing the size of image lossless compression technique is used which leads to the fast transmission of image data through transmission channel. The biometric fingerprint is useful for authentication purpose. Biometric method is more secure method of authentication because it requires physical presence of human being and it is untraceable.
Identity verification plays an important role in creating trust in the economic system. It can, and should, be done in a way that doesn't decrease individual privacy.
Sophisticated technologies realized from applying the idea of biometric identification are increasingly applied in the entrance security management system, private document protection, and security access control. Common biometric identification involves voice, attitude, keystroke, signature, iris, face, palm or finger prints, etc. Still, there are novel identification technologies based on the individual's biometric features under development [1-4].
Security as a condition is the degree of resistance to, or protection from harm. Securing gadgets in a way that is simple for the user to deploy yet, stringent enough to deny any malware intrusions onto the protected circle is investigated to find a balance between the extremes. Basically, the dominant approach on current control access is via password or PIN, but its flaw is being clearly documented. An application (to be incorporated in a mobile phone) that allows the user's gadget to be used as a Biometric Capture device in addition to serve as a Biometric Signature acquisition device for processing a multi-level authentication procedure to allow access to any specific Web Service of exclusive confidentiality is proposed. To evaluate the lucidness of the proposed procedure, a specific set of domain specifications to work on are chosen and the accuracy of the Biometric face Recognition carried out is evaluated along with the compatibility of the Application developed with different sample inputs. The results obtained are exemplary compared to the existing other devices to suit a larger section of the society through the Internet for improving the security.
In large-scale systems, user authentication usually needs the assistance from a remote central authentication server via networks. The authentication service however could be slow or unavailable due to natural disasters or various cyber attacks on communication channels. This has raised serious concerns in systems which need robust authentication in emergency situations. The contribution of this paper is two-fold. In a slow connection situation, we present a secure generic multi-factor authentication protocol to speed up the whole authentication process. Compared with another generic protocol in the literature, the new proposal provides the same function with significant improvements in computation and communication. Another authentication mechanism, which we name stand-alone authentication, can authenticate users when the connection to the central server is down. We investigate several issues in stand-alone authentication and show how to add it on multi-factor authentication protocols in an efficient and generic way.
In this paper, we propose a remote password authentication scheme based on 3-D geometry with biometric value of a user. It is simple and practically useful and also a legal user can freely choose and change his password using smart card that contains some information. The security of the system depends on the points on the diagonal of a cuboid in 3D environment. Using biometric value makes the points more secure because the characteristics of the body parts cannot be copied or stolen.
ID/password-based authentication is commonly used in network services. Some users set different ID/password pairs for different services, but other users reuse a pair of ID/password to other services. Such recycling allows the list attack in which an adversary tries to spoof a target user by using a list of IDs and passwords obtained from other system by some means (an insider attack, malwares, or even a DB leakage). As a countermeasure agains the list attack, biometric authentication attracts much attention than before. In 2012, Hattori et al. proposed a cancelable biometrics authentication scheme (fundamental scheme) based on homomorphic encryption algorithms. In the scheme, registered biometric information (template) and biometric information to compare are encrypted, and the similarity between these biometric information is computed with keeping encrypted. Only the privileged entity (a decryption center), who has a corresponding decryption key, can obtain the similarity by decrypting the encrypted similarity and judge whether they are same or not. Then, Hirano et al. showed the replay attack against this scheme, and, proposed two enhanced authentication schemes. In this paper, we propose a spoofing attack against the fundamental scheme when the feature vector, which is obtained by digitalizing the analogue biometric information, is represented as a binary coding such as Iris Code and Competitive Code. The proposed attack uses an unexpected vector as input, whose distance to all possible binary vectors is constant. Since the proposed attack is independent from the replay attack, the attack is also applicable to two revised schemes by Hirano et al. as well. Moreover, this paper also discusses possible countermeasures to the proposed spoofing attack. In fact, this paper proposes a countermeasure by detecting such unexpected vector.
This paper proposes an enhanced method for personal authentication based on finger Knuckle Print using Kekre's wavelet transform (KWT). Finger-knuckle-print (FKP) is the inherent skin patterns of the outer surface around the phalangeal joint of one's finger. It is highly discriminable and unique which makes it an emerging promising biometric identifier. Kekre's wavelet transform is constructed from Kekre's transform. The proposed system is evaluated on prepared FKP database that involves all categories of FKP. The total database of 500 samples of FKP. This paper focuses the different image enhancement techniques for the pre-processing of the captured images. The proposed algorithm is examined on 350 training and 150 testing samples of database and shows that the quality of database and pre-processing techniques plays important role to recognize the individual. The experimental result calculate the performance parameters like false acceptance rate (FAR), false rejection rate (FRR), True Acceptance rate (TAR), True rejection rate (TRR). The tested result demonstrated the improvement in EER (Error Equal Rate) which is very much important for authentication. The experimental result using Kekre's algorithm along with image enhancement shows that the finger knuckle recognition rate is better than the conventional method.
Recently, the demand for more robust protection against unauthorized use of mobile devices has been rapidly growing. This paper presents a novel biometric modality Transient Evoked Otoacoustic Emission (TEOAE) for mobile security. Prior works have investigated TEOAE for biometrics in a setting where an individual is to be identified among a pre-enrolled identity gallery. However, this limits the applicability to mobile environment, where attacks in most cases are from imposters unknown to the system before. Therefore, we employ an unsupervised learning approach based on Autoencoder Neural Network to tackle such blind recognition problem. The learning model is trained upon a generic dataset and used to verify an individual in a random population. We also introduce the framework of mobile biometric system considering practical application. Experiments show the merits of the proposed method and system performance is further evaluated by cross-validation with an average EER 2.41% achieved.
Biometrics is attracting increasing attention in privacy and security concerned issues, such as access control and remote financial transaction. However, advanced forgery and spoofing techniques are threatening the reliability of conventional biometric modalities. This has been motivating our investigation of a novel yet promising modality transient evoked otoacoustic emission (TEOAE), which is an acoustic response generated from cochlea after a click stimulus. Unlike conventional modalities that are easily accessible or captured, TEOAE is naturally immune to replay and falsification attacks as a physiological outcome from human auditory system. In this paper, we resort to wavelet analysis to derive the time-frequency representation of such nonstationary signal, which reveals individual uniqueness and long-term reproducibility. A machine learning technique linear discriminant analysis is subsequently utilized to reduce intrasubject variability and further capture intersubject differentiation features. Considering practical application, we also introduce a complete framework of the biometric system in both verification and identification modes. Comparative experiments on a TEOAE data set of biometric setting show the merits of the proposed method. Performance is further improved with fusion of information from both ears.
This paper proposes and describes an active authentication model based on user profiles built from user-issued commands when interacting with GUI-based application. Previous behavioral models derived from user issued commands were limited to analyzing the user's interaction with the *Nix (Linux or Unix) command shell program. Human-computer interaction (HCI) research has explored the idea of building users profiles based on their behavioral patterns when interacting with such graphical interfaces. It did so by analyzing the user's keystroke and/or mouse dynamics. However, none had explored the idea of creating profiles by capturing users' usage characteristics when interacting with a specific application beyond how a user strikes the keyboard or moves the mouse across the screen. We obtain and utilize a dataset of user command streams collected from working with Microsoft (MS) Word to serve as a test bed. User profiles are first built using MS Word commands and identification takes place using machine learning algorithms. Best performance in terms of both accuracy and Area under the Curve (AUC) for Receiver Operating Characteristic (ROC) curve is reported using Random Forests (RF) and AdaBoost with random forests.
Using one password for all web services is not secure because the leakage of the password compromises all the web services accounts, while using independent passwords for different web services is inconvenient for the identity claimant to memorize. A password manager is used to address this security-convenience dilemma by storing and retrieving multiple existing passwords using one master password. On the other hand, a password manager liberates human brain by enabling people to generate strong passwords without worry about memorizing them. While a password manager provides a convenient and secure way to managing multiple passwords, it centralizes the passwords storage and shifts the risk of passwords leakage from distributed service providers to a software or token authenticated by a single master password. Concerned about this one master password based security, biometrics could be used as a second factor for authentication by verifying the ownership of the master password. However, biometrics based authentication is more privacy concerned than a non-biometric password manager. In this paper we propose a cloud password manager scheme exploiting privacy enhanced biometrics, which achieves both security and convenience in a privacy-enhanced way. The proposed password manager scheme relies on a cloud service to synchronize all local password manager clients in an encrypted form, which is efficient to deploy the updates and secure against untrusted cloud service providers.