Visible to the public Biblio

Filters: Keyword is attacker  [Clear All Filters]
2022-06-09
Javid, Farshad, Lighvan, Mina Zolfy.  2021.  Honeypots Vulnerabilities to Backdoor Attack. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :161–166.
Honeypots are widely used to increase the security of systems and networks, but they only observe the activities that are done against them. A honeypot will not be able to detect an exploit in another system unless it interacts directly with it. In addition to the weakness caused by the normal behavior of honeypots, our research shows that honeypots may succumb to back door attacks. To prove this claim, a backdoor attack is performed on the popular Honeypot system. Experimental results show that the Kfsensor Honeypot is bypassed using a backdoor attack, and network protection is disabled even with the Honeypot enabled.
2021-05-25
Kore, Ashwini, Patil, Shailaja.  2020.  Robust Cross-Layer Security Framework For Internet of Things Enabled Wireless Sensor Networks. 2020 International Conference on Emerging Smart Computing and Informatics (ESCI). :142—147.

The significant development of Internet of Things (IoT) paradigm for monitoring the real-time applications using the wireless communication technologies leads to various challenges. The secure data transmission and privacy is one of the key challenges of IoT enabled Wireless Sensor Networks (WSNs) communications. Due to heterogeneity of attackers like Man-in-Middle Attack (MIMA), the present single layered security solutions are not sufficient. In this paper, the robust cross-layer trust computation algorithm for MIMA attacker detection proposed for IoT enabled WSNs called IoT enabled Cross-Layer Man-in-Middle Attack Detection System (IC-MADS). In IC-MADS, first robust clustering method proposed to form the clusters and cluster head (CH) preference. After clustering, for every sensor node, its trust value computed using the parameters of three layers such as MAC, Physical, and Network layers to protect the network communications in presence of security threats. The simulation results prove that IC-MADS achieves better protection against MIMA attacks with minimum overhead and energy consumption.

2021-03-04
Sun, H., Liu, L., Feng, L., Gu, Y. X..  2014.  Introducing Code Assets of a New White-Box Security Modeling Language. 2014 IEEE 38th International Computer Software and Applications Conference Workshops. :116—121.

This paper argues about a new conceptual modeling language for the White-Box (WB) security analysis. In the WB security domain, an attacker may have access to the inner structure of an application or even the entire binary code. It becomes pretty easy for attackers to inspect, reverse engineer, and tamper the application with the information they steal. The basis of this paper is the 14 patterns developed by a leading provider of software protection technologies and solutions. We provide a part of a new modeling language named i-WBS (White-Box Security) to describe problems of WB security better. The essence of White-Box security problem is code security. We made the new modeling language focus on code more than ever before. In this way, developers who are not security experts can easily understand what they need to really protect.

2021-01-28
Kariyappa, S., Qureshi, M. K..  2020.  Defending Against Model Stealing Attacks With Adaptive Misinformation. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :767—775.

Deep Neural Networks (DNNs) are susceptible to model stealing attacks, which allows a data-limited adversary with no knowledge of the training dataset to clone the functionality of a target model, just by using black-box query access. Such attacks are typically carried out by querying the target model using inputs that are synthetically generated or sampled from a surrogate dataset to construct a labeled dataset. The adversary can use this labeled dataset to train a clone model, which achieves a classification accuracy comparable to that of the target model. We propose "Adaptive Misinformation" to defend against such model stealing attacks. We identify that all existing model stealing attacks invariably query the target model with Out-Of-Distribution (OOD) inputs. By selectively sending incorrect predictions for OOD queries, our defense substantially degrades the accuracy of the attacker's clone model (by up to 40%), while minimally impacting the accuracy (\textbackslashtextless; 0.5%) for benign users. Compared to existing defenses, our defense has a significantly better security vs accuracy trade-off and incurs minimal computational overhead.

2020-12-17
Basan, E., Gritsynin, A., Avdeenko, T..  2019.  Framework for Analyzing the Security of Robot Control Systems. 2019 International Conference on Information Systems and Computer Science (INCISCOS). :354—360.

The purpose of this work is to analyze the security model of a robotized system, to analyze the approaches to assessing the security of this system, and to develop our own framework. The solution to this problem involves the use of developed frameworks. The analysis will be conducted on a robotic system of robots. The prefix structures assume that the robotic system is divided into levels, and after that it is necessary to directly protect each level. Each level has its own characteristics and drawbacks that must be considered when developing a security system for a robotic system.

2020-12-11
Ghose, N., Lazos, L., Rozenblit, J., Breiger, R..  2019.  Multimodal Graph Analysis of Cyber Attacks. 2019 Spring Simulation Conference (SpringSim). :1—12.

The limited information on the cyberattacks available in the unclassified regime, hardens standardizing the analysis. We address the problem of modeling and analyzing cyberattacks using a multimodal graph approach. We formulate the stages, actors, and outcomes of cyberattacks as a multimodal graph. Multimodal graph nodes include cyberattack victims, adversaries, autonomous systems, and the observed cyber events. In multimodal graphs, single-modality graphs are interconnected according to their interaction. We apply community and centrality analysis on the graph to obtain in-depth insights into the attack. In community analysis, we cluster those nodes that exhibit “strong” inter-modal ties. We further use centrality to rank the nodes according to their importance. Classifying nodes according to centrality provides the progression of the attack from the attacker to the targeted nodes. We apply our methods to two popular case studies, namely GhostNet and Putter Panda and demonstrate a clear distinction in the attack stages.

2020-11-02
Shayan, Mohammed, Bhattacharjee, Sukanta, Song, Yong-Ak, Chakrabarty, Krishnendu, Karri, Ramesh.  2019.  Deceive the Attacker: Thwarting IP Theft in Sieve-Valve-based Biochips. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :210—215.

Researchers develop bioassays following rigorous experimentation in the lab that involves considerable fiscal and highly-skilled-person-hour investment. Previous work shows that a bioassay implementation can be reverse engineered by using images or video and control signals of the biochip. Hence, techniques must be devised to protect the intellectual property (IP) rights of the bioassay developer. This study is the first step in this direction and it makes the following contributions: (1) it introduces use of a sieve-valve as a security primitive to obfuscate bioassay implementations; (2) it shows how sieve-valves can be used to obscure biochip building blocks such as multiplexers and mixers; (3) it presents design rules and security metrics to design and measure obfuscated biochips. We assess the cost-security trade-offs associated with this solution and demonstrate practical sieve-valve based obfuscation on real-life biochips.

2020-08-13
Yang, Xudong, Gao, Ling, Wang, Hai, Zheng, Jie, Guo, Hongbo.  2019.  A Semantic k-Anonymity Privacy Protection Method for Publishing Sparse Location Data. 2019 Seventh International Conference on Advanced Cloud and Big Data (CBD). :216—222.

With the development of location technology, location-based services greatly facilitate people's life . However, due to the location information contains a large amount of user sensitive informations, the servicer in location-based services published location data also be subject to the risk of privacy disclosure. In particular, it is more easy to lead to privacy leaks without considering the attacker's semantic background knowledge while the publish sparse location data. So, we proposed semantic k-anonymity privacy protection method to against above problem in this paper. In this method, we first proposed multi-user compressing sensing method to reconstruct the missing location data . To balance the availability and privacy requirment of anonymity set, We use semantic translation and multi-view fusion to selected non-sensitive data to join anonymous set. Experiment results on two real world datasets demonstrate that our solution improve the quality of privacy protection to against semantic attacks.

2020-03-02
Gupta, Diksha, Saia, Jared, Young, Maxwell.  2019.  Peace Through Superior Puzzling: An Asymmetric Sybil Defense. 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). :1083–1094.

A common tool to defend against Sybil attacks is proof-of-work, whereby computational puzzles are used to limit the number of Sybil participants. Unfortunately, current Sybil defenses require significant computational effort to offset an attack. In particular, good participants must spend computationally at a rate that is proportional to the spending rate of an attacker. In this paper, we present the first Sybil defense algorithm which is asymmetric in the sense that good participants spend at a rate that is asymptotically less than an attacker. In particular, if T is the rate of the attacker's spending, and J is the rate of joining good participants, then our algorithm spends at a rate f O($\surd$(TJ) + J). We provide empirical evidence that our algorithm can be significantly more efficient than previous defenses under various attack scenarios. Additionally, we prove a lower bound showing that our algorithm's spending rate is asymptotically optimal among a large family of algorithms.

2020-02-26
Dhanya, K., Jeyalakshmi, C., Balakumar, A..  2019.  A Secure Autonomic Mobile Ad-Hoc Network Based Trusted Routing Proposal. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1–6.

This research proposes an inspection on Trust Based Routing protocols to protect Internet of Things directing to authorize dependability and privacy amid to direction-finding procedure in inaccessible systems. There are number of Internet of Things (IOT) gadgets are interrelated all inclusive, the main issue is the means by which to protect the routing of information in the important systems from different types of stabbings. Clients won't feel secure on the off chance that they know their private evidence could without much of a stretch be gotten to and traded off by unapproved people or machines over the system. Trust is an imperative part of Internet of Things (IOT). It empowers elements to adapt to vulnerability and roughness caused by the through and through freedom of other devices. In Mobile Ad-hoc Network (MANET) host moves frequently in any bearing, so that the topology of the network also changes frequently. No specific algorithm is used for routing the packets. Packets/data must be routed by intermediate nodes. It is procumbent to different occurrences ease. There are various approaches to compute trust for a node such as fuzzy trust approach, trust administration approach, hybrid approach, etc. Adaptive Information Dissemination (AID) is a mechanism which ensures the packets in a specific transmission and it analysis of is there any attacks by hackers.It encompasses of ensuring the packet count and route detection between source and destination with trusted path.Trust estimation dependent on the specific condition or setting of a hub, by sharing the setting information onto alternate hubs in the framework would give a superior answer for this issue.Here we present a survey on various trust organization approaches in MANETs. We bring out instantaneous of these approaches for establishing trust of the partaking hubs in a dynamic and unverifiable MANET atmosphere.

2019-11-26
Baykara, Muhammet, Gürel, Zahit Ziya.  2018.  Detection of Phishing Attacks. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1-5.

Phishing is a form of cybercrime where an attacker imitates a real person / institution by promoting them as an official person or entity through e-mail or other communication mediums. In this type of cyber attack, the attacker sends malicious links or attachments through phishing e-mails that can perform various functions, including capturing the login credentials or account information of the victim. These e-mails harm victims because of money loss and identity theft. In this study, a software called "Anti Phishing Simulator'' was developed, giving information about the detection problem of phishing and how to detect phishing emails. With this software, phishing and spam mails are detected by examining mail contents. Classification of spam words added to the database by Bayesian algorithm is provided.

2019-02-08
Yi, F., Cai, H. Y., Xin, F. Z..  2018.  A Logic-Based Attack Graph for Analyzing Network Security Risk Against Potential Attack. 2018 IEEE International Conference on Networking, Architecture and Storage (NAS). :1-4.
In this paper, we present LAPA, a framework for automatically analyzing network security risk and generating attack graph for potential attack. The key novelty in our work is that we represent the properties of networks and zero day vulnerabilities, and use logical reasoning algorithm to generate potential attack path to determine if the attacker can exploit these vulnerabilities. In order to demonstrate the efficacy, we have implemented the LAPA framework and compared with three previous network vulnerability analysis methods. Our analysis results have a low rate of false negatives and less cost of processing time due to the worst case assumption and logical property specification and reasoning. We have also conducted a detailed study of the efficiency for generation attack graph with different value of attack path number, attack path depth and network size, which affect the processing time mostly. We estimate that LAPA can produce high quality results for a large portion of networks.
2018-11-14
Teoh, T. T., Nguwi, Y. Y., Elovici, Y., Cheung, N. M., Ng, W. L..  2017.  Analyst Intuition Based Hidden Markov Model on High Speed, Temporal Cyber Security Big Data. 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). :2080–2083.
Hidden Markov Models (HMM) are probabilistic models that can be used for forecasting time series data. It has seen success in various domains like finance [1-5], bioinformatics [6-8], healthcare [9-11], agriculture [12-14], artificial intelligence[15-17]. However, the use of HMM in cyber security found to date is numbered. We believe the properties of HMM being predictive, probabilistic, and its ability to model different naturally occurring states form a good basis to model cyber security data. It is hence the motivation of this work to provide the initial results of our attempts to predict security attacks using HMM. A large network datasets representing cyber security attacks have been used in this work to establish an expert system. The characteristics of attacker's IP addresses can be extracted from our integrated datasets to generate statistical data. The cyber security expert provides the weight of each attribute and forms a scoring system by annotating the log history. We applied HMM to distinguish between a cyber security attack, unsure and no attack by first breaking the data into 3 cluster using Fuzzy K mean (FKM), then manually label a small data (Analyst Intuition) and finally use HMM state-based approach. By doing so, our results are very encouraging as compare to finding anomaly in a cyber security log, which generally results in creating huge amount of false detection.
2018-04-04
Zekri, M., Kafhali, S. E., Aboutabit, N., Saadi, Y..  2017.  DDoS attack detection using machine learning techniques in cloud computing environments. 2017 3rd International Conference of Cloud Computing Technologies and Applications (CloudTech). :1–7.

Cloud computing is a revolution in IT technology that provides scalable, virtualized on-demand resources to the end users with greater flexibility, less maintenance and reduced infrastructure cost. These resources are supervised by different management organizations and provided over Internet using known networking protocols, standards and formats. The underlying technologies and legacy protocols contain bugs and vulnerabilities that can open doors for intrusion by the attackers. Attacks as DDoS (Distributed Denial of Service) are ones of the most frequent that inflict serious damage and affect the cloud performance. In a DDoS attack, the attacker usually uses innocent compromised computers (called zombies) by taking advantages of known or unknown bugs and vulnerabilities to send a large number of packets from these already-captured zombies to a server. This may occupy a major portion of network bandwidth of the victim cloud infrastructures or consume much of the servers time. Thus, in this work, we designed a DDoS detection system based on the C.4.5 algorithm to mitigate the DDoS threat. This algorithm, coupled with signature detection techniques, generates a decision tree to perform automatic, effective detection of signatures attacks for DDoS flooding attacks. To validate our system, we selected other machine learning techniques and compared the obtained results.

2018-02-27
He, F., Rao, N. S. V., Ma, C. Y. T..  2017.  Game-Theoretic Analysis of System of Systems with Inherent Robustness Parameters. 2017 20th International Conference on Information Fusion (Fusion). :1–9.

Large-scale infrastructures are critical to economic and social development, and hence their continued performance and security are of high national importance. Such an infrastructure often is a system of systems, and its functionality critically depends on the inherent robustness of its constituent systems and its defense strategy for countering attacks. Additionally, interdependencies between the systems play another critical role in determining the infrastructure robustness specified by its survival probability. In this paper, we develop game-theoretic models between a defender and an attacker for a generic system of systems using inherent parameters and conditional survival probabilities that characterize the interdependencies. We derive Nash Equilibrium conditions for the cases of interdependent and independent systems of systems under sum-form utility functions. We derive expressions for the infrastructure survival probability that capture its dependence on cost and system parameters, and also on dependencies that are specified by conditional probabilities. We apply the results to cyber-physical systems which show the effects on system survival probability due to defense and attack intensities, inherent robustness, unit cost, target valuation, and interdependencies.

2018-02-02
Whelihan, D., Vai, M., Evanich, N., Kwak, K. J., Li, J., Britton, M., Frantz, B., Hadcock, D., Lynch, M., Schafer, D. et al..  2017.  Designing agility and resilience into embedded systems. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :249–254.

Cyber-Physical Systems (CPS) such as Unmanned Aerial Systems (UAS) sense and actuate their environment in pursuit of a mission. The attack surface of these remotely located, sensing and communicating devices is both large, and exposed to adversarial actors, making mission assurance a challenging problem. While best-practice security policies should be followed, they are rarely enough to guarantee mission success as not all components in the system may be trusted and the properties of the environment (e.g., the RF environment) may be under the control of the attacker. CPS must thus be built with a high degree of resilience to mitigate threats that security cannot alleviate. In this paper, we describe the Agile and Resilient Embedded Systems (ARES) methodology and metric set. The ARES methodology pursues cyber security and resilience (CSR) as high level system properties to be developed in the context of the mission. An analytic process guides system developers in defining mission objectives, examining principal issues, applying CSR technologies, and understanding their interactions.

2018-01-16
Pappa, A. C., Ashok, A., Govindarasu, M..  2017.  Moving target defense for securing smart grid communications: Architecture, implementation evaluation. 2017 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Supervisory Control and Data Acquisition(SCADA) communications are often subjected to various sophisticated cyber-attacks mostly because of their static system characteristics, enabling an attacker for easier profiling of the target system(s) and thereby impacting the Critical Infrastructures(CI). In this Paper, a novel approach to mitigate such static vulnerabilities is proposed by implementing a Moving Target Defense (MTD) strategy in a power grid SCADA environment, leveraging the existing communication network with an end-to-end IP-Hopping technique among trusted peers. The main contribution involves the design and implementation of MTD Architecture on Iowa State's PowerCyber testbed for targeted cyber-attacks, without compromising the availability of a SCADA system and studying the delay and throughput characteristics for different hopping rates in a realistic environment. Finally, we study two cases and provide mitigations for potential weaknesses of the proposed mechanism. Also, we propose to incorporate port mutation to further increase attack complexity as part of future work.

2017-12-20
Lacerda, A., Rodrigues, J., Macedo, J., Albuquerque, E..  2017.  Deployment and analysis of honeypots sensors as a paradigm to improve security on systems. 2017 Internet Technologies and Applications (ITA). :64–68.
This article is about study of honeypots. In this work, we use some honeypot sensors deployment and analysis to identify, currently, what are the main attacks and security breaches explored by attackers to compromise systems. For example, a common server or service exposed to the Internet can receive a million of hits per day, but sometimes would not be easy to identify the difference between legitimate access and an attacker trying to scan, and then, interrupt the service. Finally, the objective of this research is to investigate the efficiency of the honeypots sensors to identify possible safety gaps and new ways of attacks. This research aims to propose some guidelines to avoid or minimize the damage caused by these attacks in real systems.
2017-12-12
Sun, F., Zhang, P., White, J., Schmidt, D., Staples, J., Krause, L..  2017.  A Feasibility Study of Autonomically Detecting In-Process Cyber-Attacks. 2017 3rd IEEE International Conference on Cybernetics (CYBCONF). :1–8.

A cyber-attack detection system issues alerts when an attacker attempts to coerce a trusted software application to perform unsafe actions on the attacker's behalf. One way of issuing such alerts is to create an application-agnostic cyber- attack detection system that responds to prevalent software vulnerabilities. The creation of such an autonomic alert system, however, is impeded by the disparity between implementation language, function, quality-of-service (QoS) requirements, and architectural patterns present in applications, all of which contribute to the rapidly changing threat landscape presented by modern heterogeneous software systems. This paper evaluates the feasibility of creating an autonomic cyber-attack detection system and applying it to several exemplar web-based applications using program transformation and machine learning techniques. Specifically, we examine whether it is possible to detect cyber-attacks (1) online, i.e., as they occur using lightweight structures derived from a call graph and (2) offline, i.e., using machine learning techniques trained with features extracted from a trace of application execution. In both cases, we first characterize normal application behavior using supervised training with the test suites created for an application as part of the software development process. We then intentionally perturb our test applications so they are vulnerable to common attack vectors and then evaluate the effectiveness of various feature extraction and learning strategies on the perturbed applications. Our results show that both lightweight on-line models based on control flow of execution path and application specific off-line models can successfully and efficiently detect in-process cyber-attacks against web applications.

2017-03-07
Aggarwal, P., Maqbool, Z., Grover, A., Pammi, V. S. C., Singh, S., Dutt, V..  2015.  Cyber security: A game-theoretic analysis of defender and attacker strategies in defacing-website games. 2015 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–8.

The rate at which cyber-attacks are increasing globally portrays a terrifying picture upfront. The main dynamics of such attacks could be studied in terms of the actions of attackers and defenders in a cyber-security game. However currently little research has taken place to study such interactions. In this paper we use behavioral game theory and try to investigate the role of certain actions taken by attackers and defenders in a simulated cyber-attack scenario of defacing a website. We choose a Reinforcement Learning (RL) model to represent a simulated attacker and a defender in a 2×4 cyber-security game where each of the 2 players could take up to 4 actions. A pair of model participants were computationally simulated across 1000 simulations where each pair played at most 30 rounds in the game. The goal of the attacker was to deface the website and the goal of the defender was to prevent the attacker from doing so. Our results show that the actions taken by both the attackers and defenders are a function of attention paid by these roles to their recently obtained outcomes. It was observed that if attacker pays more attention to recent outcomes then he is more likely to perform attack actions. We discuss the implication of our results on the evolution of dynamics between attackers and defenders in cyber-security games.

2015-05-05
Mewara, B., Bairwa, S., Gajrani, J..  2014.  Browser's defenses against reflected cross-site scripting attacks. Signal Propagation and Computer Technology (ICSPCT), 2014 International Conference on. :662-667.

Due to the frequent usage of online web applications for various day-to-day activities, web applications are becoming most suitable target for attackers. Cross-Site Scripting also known as XSS attack, one of the most prominent defacing web based attack which can lead to compromise of whole browser rather than just the actual web application, from which attack has originated. Securing web applications using server side solutions is not profitable as developers are not necessarily security aware. Therefore, browser vendors have tried to evolve client side filters to defend against these attacks. This paper shows that even the foremost prevailing XSS filters deployed by latest versions of most widely used web browsers do not provide appropriate defense. We evaluate three browsers - Internet Explorer 11, Google Chrome 32, and Mozilla Firefox 27 for reflected XSS attack against different type of vulnerabilities. We find that none of above is completely able to defend against all possible type of reflected XSS vulnerabilities. Further, we evaluate Firefox after installing an add-on named XSS-Me, which is widely used for testing the reflected XSS vulnerabilities. Experimental results show that this client side solution can shield against greater percentage of vulnerabilities than other browsers. It is witnessed to be more propitious if this add-on is integrated inside the browser instead being enforced as an extension.
 

2015-04-30
Algarni, A., Yue Xu, Chan, T..  2014.  Social Engineering in Social Networking Sites: The Art of Impersonation. Services Computing (SCC), 2014 IEEE International Conference on. :797-804.

Social networking sites (SNSs), with their large number of users and large information base, seem to be the perfect breeding ground for exploiting the vulnerabilities of people, who are considered the weakest link in security. Deceiving, persuading, or influencing people to provide information or to perform an action that will benefit the attacker is known as "social engineering." Fraudulent and deceptive people use social engineering traps and tactics through SNSs to trick users into obeying them, accepting threats, and falling victim to various crimes such as phishing, sexual abuse, financial abuse, identity theft, and physical crime. Although organizations, researchers, and practitioners recognize the serious risks of social engineering, there is a severe lack of understanding and control of such threats. This may be partly due to the complexity of human behaviors in approaching, accepting, and failing to recognize social engineering tricks. This research aims to investigate the impact of source characteristics on users' susceptibility to social engineering victimization in SNSs, particularly Facebook. Using grounded theory method, we develop a model that explains what and how source characteristics influence Facebook users to judge the attacker as credible.