Biblio
This paper presents a possible implementation of progressive authentication using the Android pattern lock. Our key idea is to use one pattern for two access levels to the device; an abridged pattern is used to access generic applications and a second, extended and higher-complexity pattern is used less frequently to access more sensitive applications. We conducted a user study of 89 participants and a consecutive user survey on those participants to investigate the usability of such a pattern scheme. Data from our prototype showed that for unlocking lowsecurity applications the median unlock times for users of the multiple pattern scheme and conventional pattern scheme were 2824 ms and 5589 ms respectively, and the distributions in the two groups differed significantly (Mann-Whitney U test, p-value less than 0.05, two-tailed). From our user survey, we did not find statistically significant differences between the two groups for their qualitative responses regarding usability and security (t-test, p-value greater than 0.05, two-tailed), but the groups did not differ by more than one satisfaction rating at 90% confidence.
Cloud Computing is an important term of modern technology. The usefulness of Cloud is increasing day by day and simultaneously more and more security problems are arising as well. Two of the major threats of Cloud are improper authentication and multi-tenancy. According to the specialists both pros and cons belong to multi-tenancy. There are security protocols available but it is difficult to claim these protocols are perfect and ensure complete protection. The purpose of this paper is to propose an integrated model to ensure better Cloud security for Authentication and multi-tenancy. Multi-tenancy means sharing of resources and virtualization among clients. Since multi-tenancy allows multiple users to access same resources simultaneously, there is high probability of accessing confidential data without proper privileges. Our model includes Kerberos authentication protocol to enhance authentication security. During our research on Kerberos we have found some flaws in terms of encryption method which have been mentioned in couple of IEEE conference papers. Pondering about this complication we have elected Elliptic Curve Cryptography. On the other hand, to attenuate arose risks due to multi-tenancy we are proposing a Resource Allocation Manager Unit, a Control Database and Resource Allocation Map. This part of the model will perpetuate resource allocation for the users.
Cloud computing is a standard architecture for providing computing services among servers and cloud user (CU) for preserving data from unauthorized users. Therefore, the user authentication is more reliable to ensure cloud services accessed only by a genuine user. To improve the authentication accuracy, Tiger Hash-based Kerberos Biometric Blowfish Authentication (TH-KBBA) Mechanism is introduced for accessing data from server. It comprises three steps, namely Registration, Authentication and Ticket Granting. In the Registration process, client enrolls user details and stores on cloud server (CS) using tiger hashing function. User ID and password is given by CS after registration. When client wants to access data from CS, authentication server (AS) verifies user identity by sending a message. When authenticity is verified, AS accepts user as authenticated user and convinces CS that user is authentic. For convincing process, AS generates a ticket and encrypted using Blowfish encryption. Encrypted ticket is sent back to user. Then, CU sends message to server containing users ID and encrypted ticket. Finally, the server decrypts ticket using blowfish decryption and verifies the user ID. If these two ID gets matched, the CS grants requested data to the user. Experimental evaluation of TH-KBBA mechanism and existing methods are carried out with different factors such as Authentication accuracy, authentications time and confidentiality rate with respect to a number of CUs and data.
Through the internet and local networks, IoT devices exchange data. Most of the IoT devices are low-power devices, meaning that they are designed to use less electric power. To secure data transmission, it is required to encrypt the messages. Encryption and decryption of messages are computationally expensive activities, thus require considerable amount of processing and memory power which is not affordable to low-power IoT devices. Therefore, not all secure transmission protocols are low-power IoT devices friendly. This study proposes a secure data transmission protocol for low-power IoT devices. The design inherits some features in Kerberos and onetime password concepts. The protocol is designed for devices which are connected to each other, as in a fully connected network topology. The protocol uses symmetric key cryptography under the assumption of that the device specific keys are never being transmitted over the network. It resists DoS, message replay and Man-of-the-middle attacks while facilitating the key security concepts such as Authenticity, Confidentiality and Integrity. The designed protocol uses less number of encryption/decryption cycles and maintain session based strong authentication to facilitate secure data transmission among nodes.
In this paper, we consider ways of organizing group authentication, as well as the features of constructing the isogeny of elliptic curves. The work includes the study of isogeny graphs and their application in postquantum systems. A hierarchical group authentication scheme has been developed using transformations based on the search for isogeny of elliptic curves.
Secret passwords are very widely used for user authentication to websites, despite their known shortcomings. Most websites using passwords also implement password recovery to allow users to re-establish a shared secret if the existing value is forgotten; many such systems involve sending a password recovery email to the user, e.g. containing a secret link. The security of password recovery, and hence the entire user-website relationship, depends on the email being acted upon correctly; unfortunately, as we show, such emails are not always designed to maximise security and can introduce vulnerabilities into recovery. To understand better this serious practical security problem, we surveyed password recovery emails for 50 of the top English language websites. We investigated a range of security and usability issues for such emails, covering their design, structure and content (including the nature of the user instructions), the techniques used to recover the password, and variations in email content from one web service to another. Many well-known web services, including Facebook, Dropbox, and Microsoft, suffer from recovery email design, structure and content issues. This is, to our knowledge, the first study of its type reported in the literature. This study has enabled us to formulate a set of recommendations for the design of such emails.
Smart Grid (SG) technology has been developing for years, which facilitates users with portable access to power through being applied in numerous application scenarios, one of which is the electric vehicle charging. In order to ensure the security of the charging process, users need authenticating with the smart meter for the subsequent communication. Although there are many researches in this field, few of which have endeavored to protect the anonymity and the untraceability of users during the authentication. Further, some studies consider the problem of user anonymity, but they are non-light-weight protocols, even some can not assure any fairness in key agreement. In this paper, we first points out that existing authentication schemes for Smart Grid are neither lack of critical security nor short of important property such as untraceability, then we propose a new two-factor lightweight user authentication scheme based on password and biometric. The authentication process of the proposed scheme includes four message exchanges among the user mobile, smart meter and the cloud server, and then a security one-time session key is generated for the followed communication process. Moreover, the scheme has some new features, such as the protection of the user's anonymity and untraceability. Security analysis shows that our proposed scheme can resist various well-known attacks and the performance analysis shows that compared to other three schemes, our scheme is more lightweight, secure and efficient.
With the pervasiveness of the Internet of Things (IoT) and the rapid progress of wireless communications, Wireless Body Area Networks (WBANs) have attracted significant interest from the research community in recent years. As a promising networking paradigm, it is adopted to improve the healthcare services and create a highly reliable ubiquitous healthcare system. However, the flourish of WBANs still faces many challenges related to security and privacy preserving. In such pervasive environment where the context conditions dynamically and frequently change, context-aware solutions are needed to satisfy the users' changing needs. Therefore, it is essential to design an adaptive access control scheme that can simultaneously authorize and authenticate users while considering the dynamic context changes. In this paper, we propose a context-aware access control and anonymous authentication approach based on a secure and efficient Hybrid Certificateless Signcryption (H-CLSC) scheme. The proposed scheme combines the merits of Ciphertext-Policy Attribute-Based Signcryption (CP-ABSC) and Identity-Based Broadcast Signcryption (IBBSC) in order to satisfy the security requirements and provide an adaptive contextual privacy. From a security perspective, it achieves confidentiality, integrity, anonymity, context-aware privacy, public verifiability, and ciphertext authenticity. Moreover, the key escrow and public key certificate problems are solved through this mechanism. Performance analysis demonstrates the efficiency and the effectiveness of the proposed scheme compared to benchmark schemes in terms of functional security, storage, communication and computational cost.
Connected cars have received massive attention in Intelligent Transportation System. Many potential services, especially safety-related ones, rely on spatial-temporal messages periodically broadcast by cars. Without a secure authentication algorithm, malicious cars may send out invalid spatial-temporal messages and then deny creating them. Meanwhile, a lot of private information may be disclosed from these spatial-temporal messages. Since cars move on expressways at high speed, any authentication must be performed in real-time to prevent crashes. In this paper, we propose a Fast and Anonymous Spatial-Temporal Trust (FastTrust) mechanism to ensure these properties. In contrast to most authentication protocols which rely on fixed infrastructures, FastTrust is distributed and mostly designed on symmetric-key cryptography and an entropy-based commitment, and is able to fast authenticate spatial-temporal messages. FastTrust also ensures the anonymity and unlinkability of spatial-temporal messages by developing a pseudonym-varying scheduling scheme on cars. We provide both analytical and simulation evaluations to show that FastTrust achieves the security and privacy properties. FastTrust is low-cost in terms of communication and computational resources, authenticating 20 times faster than existing Elliptic Curve Digital Signature Algorithm.
Design of anonymous authentication scheme is one of the most important challenges in Vehicular Ad hoc Networks (VANET). Most of the existing schemes have high computational and communication overhead and they do not meet security requirements. Recently, Azees et al. have introduced an Efficient Anonymous Authentication with Conditional Privacy-Preserving (EAAP) scheme for VANET and claimed that it is secure. In this paper, we show that this protocol is vulnerable against replay attack, impersonation attack and message modification attack. Also, we show that the messages sent by a vehicle are linkable. Therefore, an adversary can easily track the vehicles. In addition, it is shown that vehicles face with some problems when they enter in a new Trusted Authority (TA) range. As a solution, we propose a new authentication protocol which is more secure than EAAP protocol without increasing its computational and communication overhead.
In spite of being a promising technology which will make our lives a lot easier we cannot be oblivious to the fact IoT is not safe from online threat and attacks. Thus, along with the growth of IoT we also need to work on its aspects. Taking into account the limited resources that these devices have it is important that the security mechanisms should also be less complex and do not hinder the actual functionality of the device. In this paper, we propose an ECC based lightweight authentication for IoT devices which deploy RFID tags at the physical layer. ECC is a very efficient public key cryptography mechanism as it provides privacy and security with lesser computation overhead. We also present a security and performance analysis to verify the strength of our proposed approach.
To prevent users' privacy from leakage, more and more mobile devices employ biometric-based authentication approaches, such as fingerprint, face recognition, voiceprint authentications, etc., to enhance the privacy protection. However, these approaches are vulnerable to replay attacks. Although state-of-art solutions utilize liveness verification to combat the attacks, existing approaches are sensitive to ambient environments, such as ambient lights and surrounding audible noises. Towards this end, we explore liveness verification of user authentication leveraging users' lip movements, which are robust to noisy environments. In this paper, we propose a lip reading-based user authentication system, LipPass, which extracts unique behavioral characteristics of users' speaking lips leveraging build-in audio devices on smartphones for user authentication. We first investigate Doppler profiles of acoustic signals caused by users' speaking lips, and find that there are unique lip movement patterns for different individuals. To characterize the lip movements, we propose a deep learning-based method to extract efficient features from Doppler profiles, and employ Support Vector Machine and Support Vector Domain Description to construct binary classifiers and spoofer detectors for user identification and spoofer detection, respectively. Afterwards, we develop a binary tree-based authentication approach to accurately identify each individual leveraging these binary classifiers and spoofer detectors with respect to registered users. Through extensive experiments involving 48 volunteers in four real environments, LipPass can achieve 90.21% accuracy in user identification and 93.1% accuracy in spoofer detection.
Internet of things (IoT) is the smart network which connects smart objects over the Internet. The Internet is untrusted and unreliable network and thus IoT network is vulnerable to different kind of attacks. Conventional encryption and authentication techniques sometimes fail on IoT based network and intrusion may succeed to destroy the network. So, it is necessary to design intrusion detection system for such network. In our paper, we detect routing attacks such as sinkhole and selective forwarding. We have also tried to prevent our network from these attacks. We designed detection and prevention algorithm, i.e., KMA (Key Match Algorithm) and CBA (Cluster- Based Algorithm) in MatLab simulation environment. We gave two intrusion detection mechanisms and compared their results as well. True positive intrusion detection rate for our work is between 50% to 80% with KMA and 76% to 96% with CBA algorithm.
Edge computing can potentially play a crucial role in enabling user authentication and monitoring through context-aware biometrics in military/battlefield applications. For example, in Internet of Military Things (IoMT) or Internet of Battlefield Things (IoBT),an increasing number of ubiquitous sensing and computing devices worn by military personnel and embedded within military equipment (combat suit, instrumented helmets, weapon systems, etc.) are capable of acquiring a variety of static and dynamic biometrics (e.g., face, iris, periocular, fingerprints, heart-rate, gait, gestures, and facial expressions). Such devices may also be capable of collecting operational context data. These data collectively can be used to perform context-adaptive authentication in-the-wild and continuous monitoring of soldier's psychophysical condition in a dedicated edge computing architecture.
SQL Injection is one of the most critical security vulnerability in web applications. Most web applications use SQL as web applications. SQL injection mainly affects these websites and web applications. An attacker can easily bypass a web applications authentication and authorization and get access to the contents they want by SQL injection. This unauthorised access helps the attacker to retrieve confidential data's, trade secrets and can even delete or modify valuable documents. Even though, to an extend many preventive measures are found, till now there are no complete solution for this problem. Hence, from the surveys and analyses done, an enhanced methodology is proposed against SQL injection disclosure and deterrence by ensuring proper authentication using Heisenberg analysis and password security using Honey pot mechanism.
The evolution of cloud gaming systems is substantially the security requirements for computer games. Although online game development often utilizes artificial intelligence and human computer interaction, game developers and providers often do not pay much attention to security techniques. In cloud gaming, location-based games are augmented reality games which take the original principals of the game and applies them to the real world. In other terms, it uses the real world to impact the game experience. Because the execution of such games is distributed in cloud computing, users cannot be certain where their input and output data are managed. This introduces the possibility to input incorrect data in the exchange between the gamer's terminal and the gaming platform. In this context, we propose a new gaming concept for augmented reality and location-based games in order to solve the aforementioned cheating scenario problem. The merit of our approach is to establish an accurate and verifiable proof that the gamer reached the goal or found the target. The major novelty in our method is that it allows the gamer to submit an authenticated proof related to the game result without altering the privacy of positioning data.
While vehicle to everything (V2X) communication enables safety-critical automotive control systems to better support various connected services to improve safety and convenience of drivers, they also allow automotive attack surfaces to increase dynamically in modern vehicles. Many researchers as well as hackers have already demonstrated that they can take remote control of the targeted car by exploiting the vulnerabilities of in-vehicle networks such as Controller Area Networks (CANs). For assuring CAN security, we focus on how to authenticate electronic control units (ECUs) in real-time by addressing the security challenges of in-vehicle networks. In this paper, we propose a novel and lightweight authentication protocol with an attack-resilient tree algorithm, which is based on one-way hash chain. The protocol can be easily deployed in CAN by performing a firmware update of ECU. We have shown analytically that the protocol achieves a high level of security. In addition, the performance of the proposed protocol is validated on CANoe simulator for virtual ECUs and Freescale S12XF used in real vehicles. The results show that our protocol is more efficient than other authentication protocol in terms of authentication time, response time, and service delay.
In this paper, we present the design of Intelligent Security Lock prototype which acts as a smart electronic/digital door locking system. The design of lock device and software system including app is discussed. The paper presents idea to control the lock using mobile app via Bluetooth. The lock satisfies comprehensive security requirements using state of the art technologies. It provides strong authentication using face recognition on app. It stores records of all lock/unlock operations with date and time. It also provides intrusion detection notification and real time camera surveillance on app. Hence, the lock is a unique combination of various aforementioned security features providing absolute solution to problem of security.
Figuring innovations and development of web diminishes the exertion required for different procedures. Among them the most profited businesses are electronic frameworks, managing an account, showcasing, web based business and so on. This framework mostly includes the data trades ceaselessly starting with one host then onto the next. Amid this move there are such a variety of spots where the secrecy of the information and client gets loosed. Ordinarily the zone where there is greater likelihood of assault event is known as defenceless zones. Electronic framework association is one of such place where numerous clients performs there undertaking as indicated by the benefits allotted to them by the director. Here the aggressor makes the utilization of open ranges, for example, login or some different spots from where the noxious script is embedded into the framework. This scripts points towards trading off the security imperatives intended for the framework. Few of them identified with clients embedded scripts towards web communications are SQL infusion and cross webpage scripting (XSS). Such assaults must be distinguished and evacuated before they have an effect on the security and classification of the information. Amid the most recent couple of years different arrangements have been incorporated to the framework for making such security issues settled on time. Input approvals is one of the notable fields however experiences the issue of execution drops and constrained coordinating. Some other component, for example, disinfection and polluting will create high false report demonstrating the misclassified designs. At the center, both include string assessment and change investigation towards un-trusted hotspots for totally deciphering the effect and profundity of the assault. This work proposes an enhanced lead based assault discovery with specifically message fields for viably identifying the malevolent scripts. The work obstructs the ordinary access for malignant so- rce utilizing and hearty manage coordinating through unified vault which routinely gets refreshed. At the underlying level of assessment, the work appears to give a solid base to further research.