Biblio
Hash message authentication is a fundamental building block of many networking security protocols such as SSL, TLS, FTP, and even HTTPS. The sponge-based SHA-3 hashing algorithm is the most recently developed hashing function as a result of a NIST competition to find a new hashing standard after SHA-1 and SHA-2 were found to have collisions, and thus were considered broken. We used Xilinx High-Level Synthesis to develop an optimized and pipelined version of the post-quantum-secure SHA-3 hash message authentication code (HMAC) which is capable of computing a HMAC every 280 clock-cycles with an overall throughput of 604 Mbps. We cover the general security of sponge functions in both a classical and quantum computing standpoint for hash functions, and offer a general architecture for HMAC computation when sponge functions are used.
We consider a setup in which the channel from Alice to Bob is less noisy than the channel from Eve to Bob. We show that there exist encoding and decoding which accomplish error correction and authentication simultaneously; that is, Bob is able to correctly decode a message coming from Alice and reject a message coming from Eve with high probability. The system does not require any secret key shared between Alice and Bob, provides information theoretic security, and can safely be composed with other protocols in an arbitrary context.
Lack of effective accountability mechanisms brings a series of security problems for Internet today. In Next Generation Internet based on IPv6, the system of identity authentication and IP verification is the key to accounting ability. Source Address Validation Improvement (SAVI) can protect IP source addresses from being faked. But without identity authentication mechanism and certain relationship between IP and accountable identity, the accountability is still unreliable. To solve this problem, most research focus on embedding accountable identity into IP address which need either changing DHCP client or twice DHCP request process due to the separate process of user authentication and address assignment. Different from previous research, this paper first analyzes the problems and requirements of combining Web Portal or 802.1X, two main identity authentication mechanism (AAA), with the accountable address assignment in SAVI frame-work. Then a novel Cooperative mechanism for Accountable IP address assignment (CAIP) is proposed based on 802.1X and SAVI, which takes into account the validation of IP address, the authenticity and accountability of identity at the same time. Finally, we build up prototype system for both Fat AP and Thin AP wireless scenarios and simulate the performance of CAIP through large-scale campus networks' data logs. The experiment result shows that the IP addresses and identities in CAIP are protective and accountable. Compared with other previous research, CAIP is not only transparent to the terminals and networks, but also low impact on network equipment, which makes CAIP easy deployment with high compatibility and low cost.
Confidentiality, authentication, privacy and integrity are the pillars of securing data. The most generic way of providing security is setting up passwords and usernames collectively known as login credentials. Operating systems use different techniques to ensure security of login credentials yet brute force attacks and dictionary attacks along with various other types which leads to success in passing or cracking passwords.The objective of proposed HS model is to enhance the protection of SAM file used by Windows Registry so that the system is preserved from intruders.
Vehicular Ad-hoc Network (VANET) can provide vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications for efficient and safe transportation. The vehicles features high mobility, thus undergoing frequent handovers when they are moving, which introduces the significant overload on the network entities. To address the problem, the distributed mobility management (DMM) protocol for next generation mobile network has been proposed, which can be well combined with VANETs. Although the existing DMM solutions can guarantee the smooth handovers of vehicles, the security has not been fully considered in the mobility management. Moreover, the most of existing schemes cannot support group communication scenario. In this paper, we propose an efficient and secure group mobility management scheme based on the blockchain. Specifically, to reduce the handover latency and signaling cost during authentication, aggregate message authentication code (AMAC) and one-time password (OTP) are adopted. The security analysis and the performance evaluation results show that the proposed scheme can not only enhance the security functionalities but also support fast handover authentication.
Upon the new paradigm of Cellular Internet of Things, through the usage of technologies such as Narrowband IoT (NB-IoT), a massive amount of IoT devices will be able to use the mobile network infrastructure to perform their communications. However, it would be beneficial for these devices to use the same security mechanisms that are present in the cellular network architecture, so that their connections to the application layer could see an increase on security. As a way to approach this, an identity management and provisioning mechanism, as well as an identity federation between an IoT platform and the cellular network is proposed as a way to make an IoT device deemed worthy of using the cellular network and perform its actions.
In industrial internet of things, various devices are connected to external internet. For the connected devices, the authentication is very important in the viewpoint of security; therefore, physical unclonable functions (PUFs) have attracted attention as authentication techniques. On the other hand, the risk of modeling attacks on PUFs, which clone the function of PUFs mathematically, is pointed out. Therefore, a resistant-PUF such as a lightweight PUF has been proposed. However, new analytical methods (side-channel attacks: SCAs), which use side-channel information such as power or electromagnetic waves, have been proposed. The countermeasure method has also been proposed; however, an evaluation using actual devices has not been studied. Since PUFs use small production variations, the implementation evaluation is very important. Therefore, this study proposes a SCA countermeasure of the lightweight PUF. The proposed method is based on the previous studies, and maintains power consumption consistency during the generation of response. In experiments using a field programmable gate array, the measured power consumption was constant regardless of output values of the PUF could be confirmed. Then, experimental results showed that the predicted rate of the response was about 50 %, and the proposed method had a tamper resistance against SCAs.
In order to develop a `common session secret key' though the insecure channel, cryptographic Key Agreement Protocol plays a major role. Many researchers' cryptographic protocol uses smart card as a medium to store transaction secret values. The tampered resistance property of smart card is unable to defend the secret values from side channel attacks. It means a lost smart card is an easy target for any attacker. Though password authentication helps the protocol to give secrecy but on-line as well as off-line password guessing attack can make the protocol vulnerable. The concerned paper manifested key agreement protocol based on three party authenticated key agreement protocol to defend all password related attacks. The security analysis of our paper has proven that the accurate guess of the password of a legitimate user will not help the adversary to generate a common session key.