Visible to the public Biblio

Found 275 results

Filters: Keyword is machine learning algorithms  [Clear All Filters]
2023-09-20
He, Zhenghao.  2022.  Comparison Of Different Machine Learning Methods Applied To Obesity Classification. 2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE). :467—472.
Estimation for obesity levels is always an important topic in medical field since it can provide useful guidance for people that would like to lose weight or keep fit. The article tries to find a model that can predict obesity and provides people with the information of how to avoid overweight. To be more specific, this article applied dimension reduction to the data set to simplify the data and tried to Figure out a most decisive feature of obesity through Principal Component Analysis (PCA) based on the data set. The article also used some machine learning methods like Support Vector Machine (SVM), Decision Tree to do prediction of obesity and wanted to find the major reason of obesity. In addition, the article uses Artificial Neural Network (ANN) to do prediction which has more powerful feature extraction ability to do this. Finally, the article found that family history of obesity is the most decisive feature, and it may because of obesity may be greatly affected by genes or the family eating diet may have great influence. And both ANN and Decision tree’s accuracy of prediction is higher than 90%.
Samia, Bougareche, Soraya, Zehani, Malika, Mimi.  2022.  Fashion Images Classification using Machine Learning, Deep Learning and Transfer Learning Models. 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA). :1—5.
Fashion is the way we present ourselves which mainly focuses on vision, has attracted great interest from computer vision researchers. It is generally used to search fashion products in online shopping malls to know the descriptive information of the product. The main objectives of our paper is to use deep learning (DL) and machine learning (ML) methods to correctly identify and categorize clothing images. In this work, we used ML algorithms (support vector machines (SVM), K-Nearest Neirghbors (KNN), Decision tree (DT), Random Forest (RF)), DL algorithms (Convolutionnal Neurals Network (CNN), AlexNet, GoogleNet, LeNet, LeNet5) and the transfer learning using a pretrained models (VGG16, MobileNet and RestNet50). We trained and tested our models online using google colaboratory with Tensorflow/Keras and Scikit-Learn libraries that support deep learning and machine learning in Python. The main metric used in our study to evaluate the performance of ML and DL algorithms is the accuracy and matrix confusion. The best result for the ML models is obtained with the use of ANN (88.71%) and for the DL models is obtained for the GoogleNet architecture (93.75%). The results obtained showed that the number of epochs and the depth of the network have an effect in obtaining the best results.
Zhang, Chengzhao, Tang, Huiyue.  2022.  Empirical Research on Multifactor Quantitative Stock Selection Strategy Based on Machine Learning. 2022 3rd International Conference on Pattern Recognition and Machine Learning (PRML). :380—383.
In this paper, stock selection strategy design based on machine learning and multi-factor analysis is a research hotspot in quantitative investment field. Four machine learning algorithms including support vector machine, gradient lifting regression, random forest and linear regression are used to predict the rise and fall of stocks by taking stock fundamentals as input variables. The portfolio strategy is constructed on this basis. Finally, the stock selection strategy is further optimized. The empirical results show that the multifactor quantitative stock selection strategy has a good stock selection effect, and yield performance under the support vector machine algorithm is the best. With the increase of the number of factors, there is an inverse relationship between the fitting degree and the yield under various algorithms.
Dixit, Utkarsh, Bhatia, Suman, Bhatia, Pramod.  2022.  Comparison of Different Machine Learning Algorithms Based on Intrusion Detection System. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:667—672.
An IDS is a system that helps in detecting any kind of doubtful activity on a computer network. It is capable of identifying suspicious activities at both the levels i.e. locally at the system level and in transit at the network level. Since, the system does not have its own dataset as a result it is inefficient in identifying unknown attacks. In order to overcome this inefficiency, we make use of ML. ML assists in analysing and categorizing attacks on diverse datasets. In this study, the efficacy of eight machine learning algorithms based on KDD CUP99 is assessed. Based on our implementation and analysis, amongst the eight Algorithms considered here, Support Vector Machine (SVM), Random Forest (RF) and Decision Tree (DT) have the highest testing accuracy of which got SVM does have the highest accuracy
Rawat, Amarjeet, Maheshwari, Himani, Khanduja, Manisha, Kumar, Rajiv, Memoria, Minakshi, Kumar, Sanjeev.  2022.  Sentiment Analysis of Covid19 Vaccines Tweets Using NLP and Machine Learning Classifiers. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:225—230.
Sentiment Analysis (SA) is an approach for detecting subjective information such as thoughts, outlooks, reactions, and emotional state. The majority of previous SA work treats it as a text-classification problem that requires labelled input to train the model. However, obtaining a tagged dataset is difficult. We will have to do it by hand the majority of the time. Another concern is that the absence of sufficient cross-domain portability creates challenging situation to reuse same-labelled data across applications. As a result, we will have to manually classify data for each domain. This research work applies sentiment analysis to evaluate the entire vaccine twitter dataset. The work involves the lexicon analysis using NLP libraries like neattext, textblob and multi class classification using BERT. This word evaluates and compares the results of the machine learning algorithms.
Kumar Sahoo, Goutam, Kanike, Keerthana, Das, Santos Kumar, Singh, Poonam.  2022.  Machine Learning-Based Heart Disease Prediction: A Study for Home Personalized Care. 2022 IEEE 32nd International Workshop on Machine Learning for Signal Processing (MLSP). :01—06.
This study develops a framework for personalized care to tackle heart disease risk using an at-home system. The machine learning models used to predict heart disease are Logistic Regression, K - Nearest Neighbor, Support Vector Machine, Naive Bayes, Decision Tree, Random Forest and XG Boost. Timely and efficient detection of heart disease plays an important role in health care. It is essential to detect cardiovascular disease (CVD) at the earliest, consult a specialist doctor before the severity of the disease and start medication. The performance of the proposed model was assessed using the Cleveland Heart Disease dataset from the UCI Machine Learning Repository. Compared to all machine learning algorithms, the Random Forest algorithm shows a better performance accuracy score of 90.16%. The best model may evaluate patient fitness rather than routine hospital visits. The proposed work will reduce the burden on hospitals and help hospitals reach only critical patients.
Shi, Yong.  2022.  A Machine Learning Study on the Model Performance of Human Resources Predictive Algorithms. 2022 4th International Conference on Applied Machine Learning (ICAML). :405—409.
A good ecological environment is crucial to attracting talents, cultivating talents, retaining talents and making talents fully effective. This study provides a solution to the current mainstream problem of how to deal with excellent employee turnover in advance, so as to promote the sustainable and harmonious human resources ecological environment of enterprises with a shortage of talents.This study obtains open data sets and conducts data preprocessing, model construction and model optimization, and describes a set of enterprise employee turnover prediction models based on RapidMiner workflow. The data preprocessing is completed with the help of the data statistical analysis software IBM SPSS Statistic and RapidMiner.Statistical charts, scatter plots and boxplots for analysis are generated to realize data visualization analysis. Machine learning, model application, performance vector, and cross-validation through RapidMiner's multiple operators and workflows. Model design algorithms include support vector machines, naive Bayes, decision trees, and neural networks. Comparing the performance parameters of the algorithm model from the four aspects of accuracy, precision, recall and F1-score. It is concluded that the performance of the decision tree algorithm model is the highest. The performance evaluation results confirm the effectiveness of this model in sustainable exploring of enterprise employee turnover prediction in human resource management.
Hu, Ningyuan.  2022.  Classification of Mobile Phone Price Dataset Using Machine Learning Algorithms. 2022 3rd International Conference on Pattern Recognition and Machine Learning (PRML). :438—443.
With the development of technology, mobile phones are an indispensable part of human life. Factors such as brand, internal memory, wifi, battery power, camera and availability of 4G are now modifying consumers' decisions on buying mobile phones. But people fail to link those factors with the price of mobile phones; in this case, this paper is aimed to figure out the problem by using machine learning algorithms like Support Vector Machine, Decision Tree, K Nearest Neighbors and Naive Bayes to train the mobile phone dataset before making predictions of the price level. We used appropriate algorithms to predict smartphone prices based on accuracy, precision, recall and F1 score. This not only helps customers have a better choice on the mobile phone but also gives advice to businesses selling mobile phones that the way to set reasonable prices with the different features they offer. This idea of predicting prices level will give support to customers to choose mobile phones wisely in the future. The result illustrates that among the 4 classifiers, SVM returns to the most desirable performance with 94.8% of accuracy, 97.3 of F1 score (without feature selection) and 95.5% of accuracy, 97.7% of F1 score (with feature selection).
Shen, Qiyuan.  2022.  A machine learning approach to predict the result of League of Legends. 2022 International Conference on Machine Learning and Knowledge Engineering (MLKE). :38—45.
Nowadays, the MOBA game is the game type with the most audiences and players around the world. Recently, the League of Legends has become an official sport as an e-sport among 37 events in the 2022 Asia Games held in Hangzhou. As the development in the e-sport, analytical skills are also involved in this field. The topic of this research is to use the machine learning approach to analyze the data of the League of Legends and make a prediction about the result of the game. In this research, the method of machine learning is applied to the dataset which records the first 10 minutes in diamond-ranked games. Several popular machine learning (AdaBoost, GradientBoost, RandomForest, ExtraTree, SVM, Naïve Bayes, KNN, LogisticRegression, and DecisionTree) are applied to test the performance by cross-validation. Then several algorithms that outperform others are selected to make a voting classifier to predict the game result. The accuracy of the voting classifier is 72.68%.
Winahyu, R R Kartika, Somantri, Maman, Nurhayati, Oky Dwi.  2022.  Predicting Creditworthiness of Smartphone Users in Indonesia during the COVID-19 pandemic using Machine Learning. 2021 International Seminar on Machine Learning, Optimization, and Data Science (ISMODE). :223—227.
In this research work, we attempted to predict the creditworthiness of smartphone users in Indonesia during the COVID-19 pandemic using machine learning. Principal Component Analysis (PCA) and Kmeans algorithms are used for the prediction of creditworthiness with the used a dataset of 1050 respondents consisting of twelve questions to smartphone users in Indonesia during the COVID-19 pandemic. The four different classification algorithms (Logistic Regression, Support Vector Machine, Decision Tree, and Naive Bayes) were tested to classify the creditworthiness of smartphone users in Indonesia. The tests carried out included testing for accuracy, precision, recall, F1-score, and Area Under Curve Receiver Operating Characteristics (AUCROC) assesment. Logistic Regression algorithm shows the perfect performances whereas Naïve Bayes (NB) shows the least. The results of this research also provide new knowledge about the influential and non-influential variables based on the twelve questions conducted to the respondents of smartphone users in Indonesia during the COVID-19 pandemic.
2023-09-01
Sayed, Aya Nabil, Hamila, Ridha, Himeur, Yassine, Bensaali, Faycal.  2022.  Employing Information Theoretic Metrics with Data-Driven Occupancy Detection Approaches: A Comparative Analysis. 2022 5th International Conference on Signal Processing and Information Security (ICSPIS). :50—54.
Building occupancy data helps increase energy management systems’ performance, enabling lower energy use while preserving occupant comfort. The focus of this study is employing environmental data (e.g., including but not limited to temperature, humidity, carbon dioxide (CO2), etc.) to infer occupancy information. This will be achieved by exploring the application of information theory metrics with machine learning (ML) approaches to classify occupancy levels for a given dataset. Three datasets and six distinct ML algorithms were used in a comparative study to determine the best strategy for identifying occupancy patterns. It was determined that both k-nearest neighbors (kNN) and random forest (RF) identify occupancy labels with the highest overall level of accuracy, reaching 97.99% and 98.56%, respectively.
2023-08-25
Nagabhushana Babu, B, Gunasekaran, M.  2022.  An Analysis of Insider Attack Detection Using Machine Learning Algorithms. 2022 IEEE 2nd International Conference on Mobile Networks and Wireless Communications (ICMNWC). :1—7.
Among the greatest obstacles in cybersecurity is insider threat, which is a well-known massive issue. This anomaly shows that the vulnerability calls for specialized detection techniques, and resources that can help with the accurate and quick detection of an insider who is harmful. Numerous studies on identifying insider threats and related topics were also conducted to tackle this problem are proposed. Various researches sought to improve the conceptual perception of insider risks. Furthermore, there are numerous drawbacks, including a dearth of actual cases, unfairness in drawing decisions, a lack of self-optimization in learning, which would be a huge concern and is still vague, and the absence of an investigation that focuses on the conceptual, technological, and numerical facets concerning insider threats and identifying insider threats from a wide range of perspectives. The intention of the paper is to afford a thorough exploration of the categories, levels, and methodologies of modern insiders based on machine learning techniques. Further, the approach and evaluation metrics for predictive models based on machine learning are discussed. The paper concludes by outlining the difficulties encountered and offering some suggestions for efficient threat identification using machine learning.
2023-08-24
Trifonov, Roumen, Manolov, Slavcho, Tsochev, Georgi, Pavlova, Galya, Raynova, Kamelia.  2022.  Analytical Choice of an Effective Cyber Security Structure with Artificial Intelligence in Industrial Control Systems. 2022 10th International Scientific Conference on Computer Science (COMSCI). :1–6.
The new paradigm of industrial development, called Industry 4.0, faces the problems of Cybersecurity, and as it has already manifested itself in Information Systems, focuses on the use of Artificial Intelligence tools. The authors of this article build on their experience with the use of the above mentioned tools to increase the resilience of Information Systems against Cyber threats, approached to the choice of an effective structure of Cyber-protection of Industrial Systems, primarily analyzing the objective differences between them and Information Systems. A number of analyzes show increased resilience of the decentralized architecture in the management of large-scale industrial processes to the centralized management architecture. These considerations provide sufficient grounds for the team of the project to give preference to the decentralized structure with flock behavior for further research and experiments. The challenges are to determine the indicators which serve to assess and compare the impacts on the controlled elements.
2023-08-11
Patel, Sakshi, V, Thanikaiselvan.  2022.  New Image Encryption Algorithm based on Pixel Confusion-Diffusion using Hash Functions and Chaotic Map. 2022 7th International Conference on Communication and Electronics Systems (ICCES). :862—867.
Information privacy and security has become a necessity in the rapid growth of computer technology. A new algorithm for image encryption is proposed in this paper; using hash functions, chaotic map and two levels of diffusion process. The initialization key for chaos map is generated with the help of two hash functions. The initial seed for these hash functions is the sum of rows, columns and pixels across the diagonal of the plain image. Firstly, the image is scrambled using quantization unit. In the first level of diffusion process, the pixel values of the scrambled image are XOR with the normalized chaotic map. Odd pixel value is XOR with an even bit of chaotic map and even pixel is XOR with an odd bit of chaotic map. To achieve strong encryption, the image undergoes a second level of diffusion process where it is XOR with the map a finite number of times. After every round, the pixel array is circular shifted three times to achieve a strong encrypted image. The experimental and comparative analysis done with state of the art techniques on the proposed image encryption algorithm shows that it is strong enough to resist statistical and differential attacks present in the communication channel.
2023-08-03
Duan, Xiaowei, Han, Yiliang, Wang, Chao, Ni, Huanhuan.  2022.  Optimization of Encrypted Communication Model Based on Generative Adversarial Network. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :20–24.
With the progress of cryptography computer science, designing cryptographic algorithms using deep learning is a very innovative research direction. Google Brain designed a communication model using generation adversarial network and explored the encrypted communication algorithm based on machine learning. However, the encrypted communication model it designed lacks quantitative evaluation. When some plaintexts and keys are leaked at the same time, the security of communication cannot be guaranteed. This model is optimized to enhance the security by adjusting the optimizer, modifying the activation function, and increasing batch normalization to improve communication speed of optimization. Experiments were performed on 16 bits and 64 bits plaintexts communication. With plaintext and key leak rate of 0.75, the decryption error rate of the decryptor is 0.01 and the attacker can't guess any valid information about the communication.
2023-07-21
Chandra Bose, S.Subash, R, Vinay D, Raju, Yeligeti, Bhavana, N., Sengupta, Anirbit, Singh, Prabhishek.  2022.  A Deep Learning-Based Fog Computing and cloud computing for Orchestration. 2022 2nd International Conference on Innovative Sustainable Computational Technologies (CISCT). :1—5.
Fog computing is defined as a decentralized infrastructure that locations storage and processing aspects at the side of the cloud, the place records sources such as software customers and sensors exist. The Fog Computing is the time period coined via Cisco that refers to extending cloud computing to an area of the enterprise’s network. Thus, it is additionally recognized as Edge Computing or Fogging. It allows the operation of computing, storage, and networking offerings between give up units and computing facts centers. Fog computing is defined as a decentralized infrastructure that locations storage and processing aspects at the side of the cloud, the place records sources such as software customers and sensors exist. The fog computing Intelligence as Artificial Intelligence (AI) is furnished by way of Fog Nodes in cooperation with Clouds. In Fog Nodes several sorts of AI studying can be realized - such as e.g., Machine Learning (ML), Deep Learning (DL). Thanks to the Genius of Fog Nodes, for example, we communicate of Intelligent IoT.
2023-07-20
Shetty, Pallavi, Joshi, Kapil, Raman, Dr. Ramakrishnan, Rao, K. Naga Venkateshwara, Kumar, Dr. A. Vijaya, Tiwari, Mohit.  2022.  A Framework of Artificial Intelligence for the Manufacturing and Image Classification system. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I). :1504—1508.
Artificial intelligence (AI) has been successfully employed in industries for decades, beginning with the invention of expert systems in the 1960s and continuing through the present ubiquity of deep learning. Data-driven AI solutions have grown increasingly common as a means of supporting ever-more complicated industrial processes owing to the accessibility of affordable computer and storage infrastructure. Despite recent optimism, implementing AI to smart industrial applications still offers major difficulties. The present paper gives an executive summary of AI methodologies with an emphasis on deep learning before detailing unresolved issues in AI safety, data privacy, and data quality — all of which are necessary for completely automated commercial AI systems.
2023-07-14
M, Deepa, Dhiipan, J..  2022.  A Meta-Analysis of Efficient Countermeasures for Data Security. 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS). :1303–1308.
Data security is the process of protecting data from loss, alteration, or unauthorised access during its entire lifecycle. It includes everything from the policies and practices of a company to the hardware, software, storage, and user devices used by that company. Data security tools and technology increase transparency into an organization's data and its usage. These tools can protect data by employing methods including encryption and data masking personally identifiable information.. Additionally, the method aids businesses in streamlining their auditing operations and adhering to the increasingly strict data protection rules.
Priya, M Janani, Yamuna, G.  2022.  Privacy preserving Data security model for Cloud Computing Technology. 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). :1–5.
New advancements in cloud computing technology enable the usage of cloud platforms for business purposes rapidly increasing every day. Data accumulation related to business transactions, Communications, business model architecture and much other information are stored in the cloud platform and access Dubai the business Associates commonly. Considering the security point of view data stored in the cloud need to be highly secured and accessed through authentication. The proposed system is focused on evaluating a cloud integrity auditing model in which the security and privacy preserving system is being audited, privacy is decided using a machine learning algorithm. The proposed model is developed using a hybrid CatBoost algorithm (HCBA) in which the input data is stored into the cloud platform using Bring your own encryption Key (BYOEK). The security of BYOEK model is evaluated and validated with respect to the given test model in terms of Execution time comparison Vs. Data transactions.
2023-06-29
Mahara, Govind Singh, Gangele, Sharad.  2022.  Fake news detection: A RNN-LSTM, Bi-LSTM based deep learning approach. 2022 IEEE 1st International Conference on Data, Decision and Systems (ICDDS). :01–06.

Fake news is a new phenomenon that promotes misleading information and fraud via internet social media or traditional news sources. Fake news is readily manufactured and transmitted across numerous social media platforms nowadays, and it has a significant influence on the real world. It is vital to create effective algorithms and tools for detecting misleading information on social media platforms. Most modern research approaches for identifying fraudulent information are based on machine learning, deep learning, feature engineering, graph mining, image and video analysis, and newly built datasets and online services. There is a pressing need to develop a viable approach for readily detecting misleading information. The deep learning LSTM and Bi-LSTM model was proposed as a method for detecting fake news, In this work. First, the NLTK toolkit was used to remove stop words, punctuation, and special characters from the text. The same toolset is used to tokenize and preprocess the text. Since then, GLOVE word embeddings have incorporated higher-level characteristics of the input text extracted from long-term relationships between word sequences captured by the RNN-LSTM, Bi-LSTM model to the preprocessed text. The proposed model additionally employs dropout technology with Dense layers to improve the model's efficiency. The proposed RNN Bi-LSTM-based technique obtains the best accuracy of 94%, and 93% using the Adam optimizer and the Binary cross-entropy loss function with Dropout (0.1,0.2), Once the Dropout range increases it decreases the accuracy of the model as it goes 92% once Dropout (0.3).

2023-06-23
Guarino, Idio, Bovenzi, Giampaolo, Di Monda, Davide, Aceto, Giuseppe, Ciuonzo, Domenico, Pescapè, Antonio.  2022.  On the use of Machine Learning Approaches for the Early Classification in Network Intrusion Detection. 2022 IEEE International Symposium on Measurements & Networking (M&N). :1–6.
Current intrusion detection techniques cannot keep up with the increasing amount and complexity of cyber attacks. In fact, most of the traffic is encrypted and does not allow to apply deep packet inspection approaches. In recent years, Machine Learning techniques have been proposed for post-mortem detection of network attacks, and many datasets have been shared by research groups and organizations for training and validation. Differently from the vast related literature, in this paper we propose an early classification approach conducted on CSE-CIC-IDS2018 dataset, which contains both benign and malicious traffic, for the detection of malicious attacks before they could damage an organization. To this aim, we investigated a different set of features, and the sensitivity of performance of five classification algorithms to the number of observed packets. Results show that ML approaches relying on ten packets provide satisfactory results.
ISSN: 2639-5061
2023-06-22
Sun, Yanchao, Han, Yuanfeng, Zhang, Yue, Chen, Mingsong, Yu, Shui, Xu, Yimin.  2022.  DDoS Attack Detection Combining Time Series-based Multi-dimensional Sketch and Machine Learning. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :01–06.
Machine learning-based DDoS attack detection methods are mostly implemented at the packet level with expensive computational time costs, and the space cost of those sketch-based detection methods is uncertain. This paper proposes a two-stage DDoS attack detection algorithm combining time series-based multi-dimensional sketch and machine learning technologies. Besides packet numbers, total lengths, and protocols, we construct the time series-based multi-dimensional sketch with limited space cost by storing elephant flow information with the Boyer-Moore voting algorithm and hash index. For the first stage of detection, we adopt CNN to generate sketch-level DDoS attack detection results from the time series-based multi-dimensional sketch. For the sketch with potential DDoS attacks, we use RNN with flow information extracted from the sketch to implement flow-level DDoS attack detection in the second stage. Experimental results show that not only is the detection accuracy of our proposed method much close to that of packet-level DDoS attack detection methods based on machine learning, but also the computational time cost of our method is much smaller with regard to the number of machine learning operations.
ISSN: 2576-8565
Zhao, Wanqi, Sun, Haoyue, Zhang, Dawei.  2022.  Research on DDoS Attack Detection Method Based on Deep Neural Network Model inSDN. 2022 International Conference on Networking and Network Applications (NaNA). :184–188.
This paper studies Distributed Denial of Service (DDoS) attack detection by adopting the Deep Neural Network (DNN) model in Software Defined Networking (SDN). We first deploy the flow collector module to collect the flow table entries. Considering the detection efficiency of the DNN model, we also design some features manually in addition to the features automatically obtained by the flow table. Then we use the preprocessed data to train the DNN model and make a prediction. The overall detection framework is deployed in the SDN controller. The experiment results illustrate DNN model has higher accuracy in identifying attack traffic than machine learning algorithms, which lays a foundation for the defense against DDoS attack.
Fenil, E., Kumar, P. Mohan.  2022.  Towards a secure Software Defined Network with Adaptive Mitigation of DDoS attacks by Machine Learning Approaches. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1–13.
DDoS attacks produce a lot of traffic on the network. DDoS attacks may be fought in a novel method thanks to the rise of Software Defined Networking (SDN). DDoS detection and data gathering may lead to larger system load utilization among SDN as well as systems, much expense of SDN, slow reaction period to DDoS if they are conducted at regular intervals. Using the Identification Retrieval algorithm, we offer a new DDoS detection framework for detecting resource scarcity type DDoS attacks. In designed to check low-density DDoS attacks, we employ a combination of network traffic characteristics. The KSVD technique is used to generate a dictionary of network traffic parameters. In addition to providing legitimate and attack traffic models for dictionary construction, the suggested technique may be used to network traffic as well. Matching Pursuit and Wavelet-based DDoS detection algorithms are also implemented and compared using two separate data sets. Despite the difficulties in identifying LR-DoS attacks, the results of the study show that our technique has a detection accuracy of 89%. DDoS attacks are explained for each type of DDoS, and how SDN weaknesses may be exploited. We conclude that machine learning-based DDoS detection mechanisms and cutoff point DDoS detection techniques are the two most prevalent methods used to identify DDoS attacks in SDN. More significantly, the generational process, benefits, and limitations of each DDoS detection system are explained. This is the case in our testing environment, where the intrusion detection system (IDS) is able to block all previously identified threats
Satyanarayana, D, Alasmi, Aisha Said.  2022.  Detection and Mitigation of DDOS based Attacks using Machine Learning Algorithm. 2022 International Conference on Cyber Resilience (ICCR). :1–5.

In recent decades, a Distributed Denial of Service (DDoS) attack is one of the most expensive attacks for business organizations. The DDoS is a form of cyber-attack that disrupts the operation of computer resources and networks. As technology advances, the styles and tools used in these attacks become more diverse. These attacks are increased in frequency, volume, and intensity, and they can quickly disrupt the victim, resulting in a significant financial loss. In this paper, it is described the significance of DDOS attacks and propose a new method for detecting and mitigating the DDOS attacks by analyzing the traffics coming to the server from the BOTNET in attacking system. The process of analyzing the requests coming from the BOTNET uses the Machine learning algorithm in the decision making. The simulation is carried out and the results analyze the DDOS attack.