Biblio
This paper argues that the security management of the robot supply chain would preferably focus on Sino-US relations and technical bottlenecks based on a comprehensive security analysis through open-source intelligence and data mining of associated discourses. Through the lens of the newsboy model and game theory, this study reconstructs the risk appraisal model of the robot supply chain and rebalances the process of the Sino-US competition game, leading to the prediction of China's strategic movements under the supply risks. Ultimately, this paper offers a threefold suggestion: increasing the overall revenue through cost control and scaled expansion, resilience enhancement and risk prevention, and outreach of a third party's cooperation for confrontation capabilities reinforcement.
With the rapid increase of practical problem complexity and code scale, the threat of software security is increasingly serious. Consequently, it is crucial to pay attention to the analysis of software source code vulnerability in the development stage and take efficient measures to detect the vulnerability as soon as possible. Machine learning techniques have made remarkable achievements in various fields. However, the application of machine learning in the domain of vulnerability static analysis is still in its infancy and the characteristics and performance of diverse methods are quite different. In this survey, we focus on a source code-oriented static vulnerability analysis method using machine learning techniques. We review the studies on source code vulnerability analysis based on machine learning in the past decade. We systematically summarize the development trends and different technical characteristics in this field from the perspectives of the intermediate representation of source code and vulnerability prediction model and put forward several feasible research directions in the future according to the limitations of the current approaches.
At present, in the face of the huge and complex data in cloud computing, the parallel computing ability of quantum computing is particularly important. Quantum principal component analysis algorithm is used as a method of quantum state tomography. We perform feature extraction on the eigenvalue matrix of the density matrix after feature decomposition to achieve dimensionality reduction, proposed quantum principal component extraction algorithm (QPCE). Compared with the classic algorithm, this algorithm achieves an exponential speedup under certain conditions. The specific realization of the quantum circuit is given. And considering the limited computing power of the client, we propose a quantum homomorphic ciphertext dimension reduction scheme (QHEDR), the client can encrypt the quantum data and upload it to the cloud for computing. And through the quantum homomorphic encryption scheme to ensure security. After the calculation is completed, the client updates the key locally and decrypts the ciphertext result. We have implemented a quantum ciphertext dimensionality reduction scheme implemented in the quantum cloud, which does not require interaction and ensures safety. In addition, we have carried out experimental verification on the QPCE algorithm on IBM's real computing platform. Experimental results show that the algorithm can perform ciphertext dimension reduction safely and effectively.