Biblio
Cyberattacks have been the major concern with the growing advancement in technology. Complex security models have been developed to combat these attacks, yet none exhibit a full-proof performance. Recently, several machine learning (ML) methods have gained significant popularity in offering effective and efficient intrusion detection schemes which assist in proactive detection of multiple network intrusions, such as Denial of Service (DoS), Probe, Remote to User (R2L), User to Root attack (U2R). Multiple research works have been surveyed based on adopted ML methods (either signature-based or anomaly detection) and some of the useful observations, performance analysis and comparative study are highlighted in this paper. Among the different ML algorithms in survey, PSO-SVM algorithm has shown maximum accuracy. Using RBF-based classifier and C-means clustering algorithm, a new model i.e., combination of serial and parallel IDS is proposed in this paper. The detection rate to detect known and unknown intrusion is 99.5% and false positive rate is 1.3%. In PIDS (known intrusion classifier), the detection rate for DOS, probe, U2R and R2L is 99.7%, 98.8%, 99.4% and 98.5% and the False positive rate is 0.6%, 0.2%, 3% and 2.8% respectively. In SIDS (unknown intrusion classifier), the rate of intrusion detection is 99.1% and false positive rate is 1.62%. This proposed model has known intrusion detection accuracy similar to PSO - SVM and is better than all other models. Finally the future research directions relevant to this domain and contributions have been discussed.
Domain Name System (DNS) is the Internet's system for converting alphabetic names into numeric IP addresses. It is one of the early and vulnerable network protocols, which has several security loopholes that have been exploited repeatedly over the years. The clustering task for the automatic recognition of these attacks uses machine learning approaches based on semi-supervised learning. A family of bio-inspired algorithms, well known as Swarm Intelligence (SI) methods, have recently emerged to meet the requirements for the clustering task and have been successfully applied to various real-world clustering problems. In this paper, Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Kmeans, which is one of the most popular cluster algorithms, have been applied. Furthermore, hybrid algorithms consisting of Kmeans and PSO, and Kmeans and ABC have been proposed for the clustering process. The Canadian Institute for Cybersecurity (CIC) data set has been used for this investigation. In addition, different measures of clustering performance have been used to compare the different algorithms.
Aiming at the problems of low accuracy and poor effect caused by the lack of data labels in most real network traffic, an optimized density peak clustering based on the improved salp swarm algorithm is proposed for traffic anomaly detection. Through the optimization of cosine decline and chaos strategy, the salp swarm algorithm not only accelerates the convergence speed, but also enhances the search ability. Moreover, we use the improved salp swarm algorithm to adaptively search the best truncation distance of density peak clustering, which avoids the subjectivity and uncertainty of manually selecting the parameters. The experimental results based on NSL-KDD dataset show that the improved salp swarm algorithm achieves faster convergence speed and higher precision, increases the average anomaly detection accuracy of 4.74% and detection rate of 6.14%, and reduces the average false positive rate of 7.38%.