Visible to the public Biblio

Found 135 results

Filters: Keyword is Clustering algorithms  [Clear All Filters]
2019-03-06
Leung, C. K., Hoi, C. S. H., Pazdor, A. G. M., Wodi, B. H., Cuzzocrea, A..  2018.  Privacy-Preserving Frequent Pattern Mining from Big Uncertain Data. 2018 IEEE International Conference on Big Data (Big Data). :5101-5110.
As we are living in the era of big data, high volumes of wide varieties of data which may be of different veracity (e.g., precise data, imprecise and uncertain data) are easily generated or collected at a high velocity in many real-life applications. Embedded in these big data is valuable knowledge and useful information, which can be discovered by big data science solutions. As a popular data science task, frequent pattern mining aims to discover implicit, previously unknown and potentially useful information and valuable knowledge in terms of sets of frequently co-occurring merchandise items and/or events. Many of the existing frequent pattern mining algorithms use a transaction-centric mining approach to find frequent patterns from precise data. However, there are situations in which an item-centric mining approach is more appropriate, and there are also situations in which data are imprecise and uncertain. Hence, in this paper, we present an item-centric algorithm for mining frequent patterns from big uncertain data. In recent years, big data have been gaining the attention from the research community as driven by relevant technological innovations (e.g., clouds) and novel paradigms (e.g., social networks). As big data are typically published online to support knowledge management and fruition processes, these big data are usually handled by multiple owners with possible secure multi-part computation issues. Thus, privacy and security of big data has become a fundamental problem in this research context. In this paper, we present, not only an item-centric algorithm for mining frequent patterns from big uncertain data, but also a privacy-preserving algorithm. In other words, we present- in this paper-a privacy-preserving item-centric algorithm for mining frequent patterns from big uncertain data. Results of our analytical and empirical evaluation show the effectiveness of our algorithm in mining frequent patterns from big uncertain data in a privacy-preserving manner.
2019-02-25
Ali, S. S., Maqsood, J..  2018.  .Net library for SMS spam detection using machine learning: A cross platform solution. 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :470–476.

Short Message Service is now-days the most used way of communication in the electronic world. While many researches exist on the email spam detection, we haven't had the insight knowledge about the spam done within the SMS's. This might be because the frequency of spam in these short messages is quite low than the emails. This paper presents different ways of analyzing spam for SMS and a new pre-processing way to get the actual dataset of spam messages. This dataset was then used on different algorithm techniques to find the best working algorithm in terms of both accuracy and recall. Random Forest algorithm was then implemented in a real world application library written in C\# for cross platform .Net development. This library is capable of using a prebuild model for classifying a new dataset for spam and ham.

2019-01-16
Choudhary, S., Kesswani, N..  2018.  Detection and Prevention of Routing Attacks in Internet of Things. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1537–1540.

Internet of things (IoT) is the smart network which connects smart objects over the Internet. The Internet is untrusted and unreliable network and thus IoT network is vulnerable to different kind of attacks. Conventional encryption and authentication techniques sometimes fail on IoT based network and intrusion may succeed to destroy the network. So, it is necessary to design intrusion detection system for such network. In our paper, we detect routing attacks such as sinkhole and selective forwarding. We have also tried to prevent our network from these attacks. We designed detection and prevention algorithm, i.e., KMA (Key Match Algorithm) and CBA (Cluster- Based Algorithm) in MatLab simulation environment. We gave two intrusion detection mechanisms and compared their results as well. True positive intrusion detection rate for our work is between 50% to 80% with KMA and 76% to 96% with CBA algorithm.

2018-11-14
Teoh, T. T., Zhang, Y., Nguwi, Y. Y., Elovici, Y., Ng, W. L..  2017.  Analyst Intuition Inspired High Velocity Big Data Analysis Using PCA Ranked Fuzzy K-Means Clustering with Multi-Layer Perceptron (MLP) to Obviate Cyber Security Risk. 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). :1790–1793.
The growing prevalence of cyber threats in the world are affecting every network user. Numerous security monitoring systems are being employed to protect computer networks and resources from falling victim to cyber-attacks. There is a pressing need to have an efficient security monitoring system to monitor the large network datasets generated in this process. A large network datasets representing Malware attacks have been used in this work to establish an expert system. The characteristics of attacker's IP addresses can be extracted from our integrated datasets to generate statistical data. The cyber security expert provides to the weight of each attribute and forms a scoring system by annotating the log history. We adopted a special semi supervise method to classify cyber security log into attack, unsure and no attack by first breaking the data into 3 cluster using Fuzzy K mean (FKM), then manually label a small data (Analyst Intuition) and finally train the neural network classifier multilayer perceptron (MLP) base on the manually labelled data. By doing so, our results is very encouraging as compare to finding anomaly in a cyber security log, which generally results in creating huge amount of false detection. The method of including Artificial Intelligence (AI) and Analyst Intuition (AI) is also known as AI2. The classification results are encouraging in segregating the types of attacks.
Teoh, T. T., Nguwi, Y. Y., Elovici, Y., Cheung, N. M., Ng, W. L..  2017.  Analyst Intuition Based Hidden Markov Model on High Speed, Temporal Cyber Security Big Data. 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). :2080–2083.
Hidden Markov Models (HMM) are probabilistic models that can be used for forecasting time series data. It has seen success in various domains like finance [1-5], bioinformatics [6-8], healthcare [9-11], agriculture [12-14], artificial intelligence[15-17]. However, the use of HMM in cyber security found to date is numbered. We believe the properties of HMM being predictive, probabilistic, and its ability to model different naturally occurring states form a good basis to model cyber security data. It is hence the motivation of this work to provide the initial results of our attempts to predict security attacks using HMM. A large network datasets representing cyber security attacks have been used in this work to establish an expert system. The characteristics of attacker's IP addresses can be extracted from our integrated datasets to generate statistical data. The cyber security expert provides the weight of each attribute and forms a scoring system by annotating the log history. We applied HMM to distinguish between a cyber security attack, unsure and no attack by first breaking the data into 3 cluster using Fuzzy K mean (FKM), then manually label a small data (Analyst Intuition) and finally use HMM state-based approach. By doing so, our results are very encouraging as compare to finding anomaly in a cyber security log, which generally results in creating huge amount of false detection.
2018-06-20
Patil, S. U..  2017.  Gray hole attack detection in MANETs. 2017 2nd International Conference for Convergence in Technology (I2CT). :20–26.

Networking system does not liable on static infrastructure that interconnects various nodes in identical broadcast range dynamically called as Mobile Ad-hoc Network. A Network requires adaptive connectivity due to this data transmission rate increased. In this paper, we designed developed a dynamic cluster head selection to detect gray hole attack in MANETs on the origin of battery power. MANETs has dynamic nodes so we delivered novel way to choose cluster head by self-stabilizing election algorithm followed by MD5 algorithm for security purposes. The Dynamic cluster based intrusion revealing system to detect gray hole attack in MANET. This Architecture enhanced performance in terms of Packet delivery ratio and throughput due to dynamic cluster based IDS, associating results of existing system with proposed system, throughput of network increased, end to end delay and routing overhead less compared with existing system due to gray hole nodes in the MANET. The future work can be prolonged by using security algorithm AES and MD6 and also by including additional node to create large network by comparing multiple routing protocol in MANETs.

2018-06-11
Yang, C., Li, Z., Qu, W., Liu, Z., Qi, H..  2017.  Grid-Based Indexing and Search Algorithms for Large-Scale and High-Dimensional Data. 2017 14th International Symposium on Pervasive Systems, Algorithms and Networks 2017 11th International Conference on Frontier of Computer Science and Technology 2017 Third International Symposium of Creative Computing (ISPAN-FCST-ISCC). :46–51.

The rapid development of Internet has resulted in massive information overloading recently. These information is usually represented by high-dimensional feature vectors in many related applications such as recognition, classification and retrieval. These applications usually need efficient indexing and search methods for such large-scale and high-dimensional database, which typically is a challenging task. Some efforts have been made and solved this problem to some extent. However, most of them are implemented in a single machine, which is not suitable to handle large-scale database.In this paper, we present a novel data index structure and nearest neighbor search algorithm implemented on Apache Spark. We impose a grid on the database and index data by non-empty grid cells. This grid-based index structure is simple and easy to be implemented in parallel. Moreover, we propose to build a scalable KNN graph on the grids, which increase the efficiency of this index structure by a low cost in parallel implementation. Finally, experiments are conducted in both public databases and synthetic databases, showing that the proposed methods achieve overall high performance in both efficiency and accuracy.

2018-05-30
Howard, M., Pfeffer, A., Dalai, M., Reposa, M..  2017.  Predicting Signatures of Future Malware Variants. 2017 12th International Conference on Malicious and Unwanted Software (MALWARE). :126–132.
One of the challenges of malware defense is that the attacker has the advantage over the defender. In many cases, an attack is successful and causes damage before the defender can even begin to prepare a defense. The ability to anticipate attacks and prepare defenses before they occur would be a significant scientific and technological development with practical applications in cybersecurity. In this paper, we present a method to augment machine learning-based malware detection systems by predicting signatures of future malware variants and injecting these variants into the defensive system as a vaccine. Our method uses deep learning to learn patterns of malware evolution from family histories. These evolution patterns are then used to predict future family developments. Our experiments show that a detection system augmented with these future malware signatures is able to detect future malware variants that could not be detected by the detection system alone. In particular, it detected 11 new malware variants without increasing false positives, while providing up to 5 months of lead time between prediction and attack.
2018-04-11
Nandhini, M., Priya, P..  2017.  A Hybrid Routing Algorithm for Secure Environmental Monitoring System in WSN. 2017 International Conference on Communication and Signal Processing (ICCSP). :1061–1065.

Wireless sensor networks are the most prominent set of recently made sensor nodes. They play a numerous role in many applications like environmental monitoring, agriculture, Structural and industrial monitoring, defense applications. In WSN routing is one of the absolutely requisite techniques. It enhance the network lifetime. This can be gives additional priority and system security by using bio inspired algorithm. The combination of bio inspired algorithms and routing algorithms create a way to easy data transmission and improves network lifetime. We present a new metaheuristic hybrid algorithm namely firefly algorithm with Localizability aided localization routing protocol for encircle monitoring in wireless area. This algorithm entirely covers the wireless sensor area by localization process and clumping the sensor nodes with the use of LAL (Localizability Aided Localization) users can minimize the time latency, packet drop and packet loss compared to traditional methods.

2018-04-04
Nawaratne, R., Bandaragoda, T., Adikari, A., Alahakoon, D., Silva, D. De, Yu, X..  2017.  Incremental knowledge acquisition and self-learning for autonomous video surveillance. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. :4790–4795.

The world is witnessing a remarkable increase in the usage of video surveillance systems. Besides fulfilling an imperative security and safety purpose, it also contributes towards operations monitoring, hazard detection and facility management in industry/smart factory settings. Most existing surveillance techniques use hand-crafted features analyzed using standard machine learning pipelines for action recognition and event detection. A key shortcoming of such techniques is the inability to learn from unlabeled video streams. The entire video stream is unlabeled when the requirement is to detect irregular, unforeseen and abnormal behaviors, anomalies. Recent developments in intelligent high-level video analysis have been successful in identifying individual elements in a video frame. However, the detection of anomalies in an entire video feed requires incremental and unsupervised machine learning. This paper presents a novel approach that incorporates high-level video analysis outcomes with incremental knowledge acquisition and self-learning for autonomous video surveillance. The proposed approach is capable of detecting changes that occur over time and separating irregularities from re-occurrences, without the prerequisite of a labeled dataset. We demonstrate the proposed approach using a benchmark video dataset and the results confirm its validity and usability for autonomous video surveillance.

Gajjar, V., Khandhediya, Y., Gurnani, A..  2017.  Human Detection and Tracking for Video Surveillance: A Cognitive Science Approach. 2017 IEEE International Conference on Computer Vision Workshops (ICCVW). :2805–2809.

With crimes on the rise all around the world, video surveillance is becoming more important day by day. Due to the lack of human resources to monitor this increasing number of cameras manually, new computer vision algorithms to perform lower and higher level tasks are being developed. We have developed a new method incorporating the most acclaimed Histograms of Oriented Gradients, the theory of Visual Saliency and the saliency prediction model Deep Multi-Level Network to detect human beings in video sequences. Furthermore, we implemented the k - Means algorithm to cluster the HOG feature vectors of the positively detected windows and determined the path followed by a person in the video. We achieved a detection precision of 83.11% and a recall of 41.27%. We obtained these results 76.866 times faster than classification on normal images.

Rupasinghe, R. A. A., Padmasiri, D. A., Senanayake, S. G. M. P., Godaliyadda, G. M. R. I., Ekanayake, M. P. B., Wijayakulasooriya, J. V..  2017.  Dynamic clustering for event detection and anomaly identification in video surveillance. 2017 IEEE International Conference on Industrial and Information Systems (ICIIS). :1–6.

This work introduces concepts and algorithms along with a case study validating them, to enhance the event detection, pattern recognition and anomaly identification results in real life video surveillance. The motivation for the work underlies in the observation that human behavioral patterns in general continuously evolve and adapt with time, rather than being static. First, limitations in existing work with respect to this phenomena are identified. Accordingly, the notion and algorithms of Dynamic Clustering are introduced in order to overcome these drawbacks. Correspondingly, we propose the concept of maintaining two separate sets of data in parallel, namely the Normal Plane and the Anomaly Plane, to successfully achieve the task of learning continuously. The practicability of the proposed algorithms in a real life scenario is demonstrated through a case study. From the analysis presented in this work, it is evident that a more comprehensive analysis, closely following human perception can be accomplished by incorporating the proposed notions and algorithms in a video surveillance event.

2018-04-02
Innokentievich, T. P., Vasilevich, M. V..  2017.  The Evaluation of the Cryptographic Strength of Asymmetric Encryption Algorithms. 2017 Second Russia and Pacific Conference on Computer Technology and Applications (RPC). :180–183.

We propose a method for comparative analysis of evaluation of the cryptographic strength of the asymmetric encryption algorithms RSA and the existing GOST R 34.10-2001. Describes the fundamental design ratios, this method is based on computing capacity used for decoding and the forecast for the development of computer technology.

2018-02-21
Macharla, D. R., Tejaskanda, S..  2017.  An enhanced three-layer clustering approach and security framework for battlefeld surveillance. 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS). :1–6.

Hierarchical based formation is one of the approaches widely used to minimize the energy consumption in which node with higher residual energy routes the data gathered. Several hierarchical works were proposed in the literature with two and three layered architectures. In the work presented in this paper, we propose an enhanced architecture for three layered hierarchical clustering based approach, which is referred to as enhanced three-layer hierarchical clustering approach (EHCA). The EHCA is based on an enhanced feature of the grid node in terms of its mobility. Further, in our proposed EHCA, we introduce distributed clustering technique for lower level head selection and incorporate security mechanism to detect the presence of any malicious node. We show by simulation results that our proposed EHCA reduces the energy consumption significantly and thus improves the lifetime of the network. Also, we highlight the appropriateness of the proposed EHCA for battlefield surveillance applications.

Bai, Xu, Jiang, Lei, Dai, Qiong, Yang, Jiajia, Tan, Jianlong.  2017.  Acceleration of RSA processes based on hybrid ARM-FPGA cluster. 2017 IEEE Symposium on Computers and Communications (ISCC). :682–688.

Cooperation of software and hardware with hybrid architectures, such as Xilinx Zynq SoC combining ARM CPU and FPGA fabric, is a high-performance and low-power platform for accelerating RSA Algorithm. This paper adopts the none-subtraction Montgomery algorithm and the Chinese Remainder Theorem (CRT) to implement high-speed RSA processors, and deploys a 48-node cluster infrastructure based on Zynq SoC to achieve extremely high scalability and throughput of RSA computing. In this design, we use the ARM to implement node-to-node communication with the Message Passing Interface (MPI) while use the FPGA to handle complex calculation. Finally, the experimental results show that the overall performance is linear with the number of nodes. And the cluster achieves 6× 9× speedup against a multi-core desktop (Intel i7-3770) and comparable performance to a many-core server (288-core). In addition, we gain up to 2.5× energy efficiency compared to these two traditional platforms.

2018-02-15
Ni, J., Cheng, W., Zhang, K., Song, D., Yan, T., Chen, H., Zhang, X..  2017.  Ranking Causal Anomalies by Modeling Local Propagations on Networked Systems. 2017 IEEE International Conference on Data Mining (ICDM). :1003–1008.

Complex systems are prevalent in many fields such as finance, security and industry. A fundamental problem in system management is to perform diagnosis in case of system failure such that the causal anomalies, i.e., root causes, can be identified for system debugging and repair. Recently, invariant network has proven a powerful tool in characterizing complex system behaviors. In an invariant network, a node represents a system component, and an edge indicates a stable interaction between two components. Recent approaches have shown that by modeling fault propagation in the invariant network, causal anomalies can be effectively discovered. Despite their success, the existing methods have a major limitation: they typically assume there is only a single and global fault propagation in the entire network. However, in real-world large-scale complex systems, it's more common for multiple fault propagations to grow simultaneously and locally within different node clusters and jointly define the system failure status. Inspired by this key observation, we propose a two-phase framework to identify and rank causal anomalies. In the first phase, a probabilistic clustering is performed to uncover impaired node clusters in the invariant network. Then, in the second phase, a low-rank network diffusion model is designed to backtrack causal anomalies in different impaired clusters. Extensive experimental results on real-life datasets demonstrate the effectiveness of our method.

2018-02-06
Brust, M. R., Zurad, M., Hentges, L., Gomes, L., Danoy, G., Bouvry, P..  2017.  Target Tracking Optimization of UAV Swarms Based on Dual-Pheromone Clustering. 2017 3rd IEEE International Conference on Cybernetics (CYBCONF). :1–8.

Unmanned Aerial Vehicles (UAVs) are autonomous aircraft that, when equipped with wireless communication interfaces, can share data among themselves when in communication range. Compared to single UAVs, using multiple UAVs as a collaborative swarm is considerably more effective for target tracking, reconnaissance, and surveillance missions because of their capacity to tackle complex problems synergistically. Success rates in target detection and tracking depend on map coverage performance, which in turn relies on network connectivity between UAVs to propagate surveillance results to avoid revisiting already observed areas. In this paper, we consider the problem of optimizing three objectives for a swarm of UAVs: (a) target detection and tracking, (b) map coverage, and (c) network connectivity. Our approach, Dual-Pheromone Clustering Hybrid Approach (DPCHA), incorporates a multi-hop clustering and a dual-pheromone ant-colony model to optimize these three objectives. Clustering keeps stable overlay networks, while attractive and repulsive pheromones mark areas of detected targets and visited areas. Additionally, DPCHA introduces a disappearing target model for dealing with temporarily invisible targets. Extensive simulations show that DPCHA produces significant improvements in the assessment of coverage fairness, cluster stability, and connection volatility. We compared our approach with a pure dual- pheromone approach and a no-base model, which removes the base station from the model. Results show an approximately 50% improvement in map coverage compared to the pure dual-pheromone approach.

2018-01-16
Nikolskaya, K. Y., Ivanov, S. A., Golodov, V. A., Sinkov, A. S..  2017.  Development of a mathematical model of the control beginning of DDoS-attacks and malicious traffic. 2017 International Conference "Quality Management,Transport and Information Security, Information Technologies" (IT QM IS). :84–86.

A technique and algorithms for early detection of the started attack and subsequent blocking of malicious traffic are proposed. The primary separation of mixed traffic into trustworthy and malicious traffic was carried out using cluster analysis. Classification of newly arrived requests was done using different classifiers with the help of received training samples and developed success criteria.

Bhaya, W., EbadyManaa, M..  2017.  DDoS attack detection approach using an efficient cluster analysis in large data scale. 2017 Annual Conference on New Trends in Information Communications Technology Applications (NTICT). :168–173.

Distributed Denial of Service (DDoS) attack is a congestion-based attack that makes both the network and host-based resources unavailable for legitimate users, sending flooding attack packets to the victim's resources. The non-existence of predefined rules to correctly identify the genuine network flow made the task of DDoS attack detection very difficult. In this paper, a combination of unsupervised data mining techniques as intrusion detection system are introduced. The entropy concept in term of windowing the incoming packets is applied with data mining technique using Clustering Using Representative (CURE) as cluster analysis to detect the DDoS attack in network flow. The data is mainly collected from DARPA2000, CAIDA2007 and CAIDA2008 datasets. The proposed approach has been evaluated and compared with several existing approaches in terms of accuracy, false alarm rate, detection rate, F. measure and Phi coefficient. Results indicates the superiority of the proposed approach with four out five detected phases, more than 99% accuracy rate 96.29% detection rate, around 0% false alarm rate 97.98% F-measure, and 97.98% Phi coefficient.

Kumar, P. S., Parthiban, L., Jegatheeswari, V..  2017.  Auditing of Data Integrity over Dynamic Data in Cloud. 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM). :43–48.

Cloud computing is a new computing paradigm which encourages remote data storage. This facility shoots up the necessity of secure data auditing mechanism over outsourced data. Several mechanisms are proposed in the literature for supporting dynamic data. However, most of the existing schemes lack the security feature, which can withstand collusion attacks between the cloud server and the abrogated users. This paper presents a technique to overthrow the collusion attacks and the data auditing mechanism is achieved by means of vector commitment and backward unlinkable verifier local revocation group signature. The proposed work supports multiple users to deal with the remote cloud data. The performance of the proposed work is analysed and compared with the existing techniques and the experimental results are observed to be satisfactory in terms of computational and time complexity.

2018-01-10
Thaler, S., Menkonvski, V., Petkovic, M..  2017.  Towards a neural language model for signature extraction from forensic logs. 2017 5th International Symposium on Digital Forensic and Security (ISDFS). :1–6.
Signature extraction is a critical preprocessing step in forensic log analysis because it enables sophisticated analysis techniques to be applied to logs. Currently, most signature extraction frameworks either use rule-based approaches or handcrafted algorithms. Rule-based systems are error-prone and require high maintenance effort. Hand-crafted algorithms use heuristics and tend to work well only for specialized use cases. In this paper we present a novel approach to extract signatures from forensic logs that is based on a neural language model. This language model learns to identify mutable and non-mutable parts in a log message. We use this information to extract signatures. Neural language models have shown to work extremely well for learning complex relationships in natural language text. We experimentally demonstrate that our model can detect which parts are mutable with an accuracy of 86.4%. We also show how extracted signatures can be used for clustering log lines.
2017-12-20
Wang, Y., Huang, Y., Zheng, W., Zhou, Z., Liu, D., Lu, M..  2017.  Combining convolutional neural network and self-adaptive algorithm to defeat synthetic multi-digit text-based CAPTCHA. 2017 IEEE International Conference on Industrial Technology (ICIT). :980–985.
We always use CAPTCHA(Completely Automated Public Turing test to Tell Computers and Humans Apart) to prevent automated bot for data entry. Although there are various kinds of CAPTCHAs, text-based scheme is still applied most widely, because it is one of the most convenient and user-friendly way for daily user [1]. The fact is that segmentations of different types of CAPTCHAs are not always the same, which means one of CAPTCHA's bottleneck is the segmentation. Once we could accurately split the character, the problem could be solved much easier. Unfortunately, the best way to divide them is still case by case, which is to say there is no universal way to achieve it. In this paper, we present a novel algorithm to achieve state-of-the-art performance, what was more, we also constructed a new convolutional neural network as an add-on recognition part to stabilize our state-of-the-art performance of the whole CAPTCHA system. The CAPTCHA datasets we are using is from the State Administration for Industry& Commerce of the People's Republic of China. In this datasets, there are totally 33 entrances of CAPTCHAs. In this experiments, we assume that each of the entrance is known. Results are provided showing how our algorithms work well towards these CAPTCHAs.
Kim, M., Cho, H..  2017.  Secure Data Collection in Spatially Clustered Wireless Sensor Networks. 2017 25th International Conference on Systems Engineering (ICSEng). :268–276.
A wireless sensor network (WSN) can provide a low cost and flexible solution to sensing and monitoring for large distributed applications. To save energy and prolong the network lifetime, the WSN is often partitioned into a set of spatial clusters. Each cluster includes sensor nodes with similar sensing data, and only a few sensor nodes (samplers) report their sensing data to a base node. Then the base node may predict the missed data of non-samplers using the spatial correlation between sensor nodes. The problem is that the WSN is vulnerable to internal security threat such as node compromise. If the samplers are compromised and report incorrect data intentionally, then the WSN should be contaminated rapidly due to the process of data prediction at the base node. In this paper, we propose three algorithms to detect compromised samplers for secure data collection in the WSN. The proposed algorithms leverage the unique property of spatial clustering to alleviate the overhead of compromised node detection. Experiment results indicate that the proposed algorithms can identify compromised samplers with a high accuracy and low energy consumption when as many as 50% sensor nodes are misbehaving.
Ren, H., Jiang, F., Wang, H..  2017.  Resource allocation based on clustering algorithm for hybrid device-to-device networks. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.
In order to improve the spectrum utilization rate of Device-to-Device (D2D) communication, we study the hybrid resource allocation problem, which allows both the resource reuse and resource dedicated mode to work simultaneously. Meanwhile, multiple D2D devices are permitted to share uplink cellular resources with some designated cellular user equipment (CUE). Combined with the transmission requirement of different users, the optimized resource allocation problem is built which is a NP-hard problem. A heuristic greedy throughput maximization (HGTM) based on clustering algorithm is then proposed to solve the above problem. Numerical results demonstrate that the proposed HGTM outperforms existing algorithms in the sum throughput, CUEs SINR performance and the number of accessed D2D deceives.
2017-12-12
Gamachchi, A., Boztas, S..  2017.  Insider Threat Detection Through Attributed Graph Clustering. 2017 IEEE Trustcom/BigDataSE/ICESS. :112–119.

While most organizations continue to invest in traditional network defences, a formidable security challenge has been brewing within their own boundaries. Malicious insiders with privileged access in the guise of a trusted source have carried out many attacks causing far reaching damage to financial stability, national security and brand reputation for both public and private sector organizations. Growing exposure and impact of the whistleblower community and concerns about job security with changing organizational dynamics has further aggravated this situation. The unpredictability of malicious attackers, as well as the complexity of malicious actions, necessitates the careful analysis of network, system and user parameters correlated with insider threat problem. Thus it creates a high dimensional, heterogeneous data analysis problem in isolating suspicious users. This research work proposes an insider threat detection framework, which utilizes the attributed graph clustering techniques and outlier ranking mechanism for enterprise users. Empirical results also confirm the effectiveness of the method by achieving the best area under curve value of 0.7648 for the receiver operating characteristic curve.