Biblio
Conventional methods for anomaly detection include techniques based on clustering, proximity or classification. With the rapidly growing social networks, outliers or anomalies find ingenious ways to obscure themselves in the network and making the conventional techniques inefficient. In this paper, we utilize the ability of Deep Learning over topological characteristics of a social network to detect anomalies in email network and twitter network. We present a model, Graph Neural Network, which is applied on social connection graphs to detect anomalies. The combinations of various social network statistical measures are taken into account to study the graph structure and functioning of the anomalous nodes by employing deep neural networks on it. The hidden layer of the neural network plays an important role in finding the impact of statistical measure combination in anomaly detection.
To preserve the privacy of social networks, most existing methods are applied to satisfy different anonymity models, but there are some serious problems such as huge large information losses and great structural modifications of original social network. Therefore, an improved privacy protection method called k-subgraph is proposed, which is based on k-degree anonymous graph derived from k-anonymity to keep the network structure stable. The method firstly divides network nodes into several clusters by label propagation algorithm, and then reconstructs the sub-graph by means of moving edges to achieve k-degree anonymity. Experimental results show that our k-subgraph method can not only effectively improve the defense capability against malicious attacks based on node degrees, but also maintain stability of network structure. In addition, the cost of information losses due to anonymity is minimized ideally.
Botnet has been evolving over time since its birth. Nowadays, P2P (Peer-to-Peer) botnet has become a main threat to cyberspace security, owing to its strong concealment and easy expansibility. In order to effectively detect P2P botnet, researchers often focus on the analysis of network traffic. For the sake of enriching P2P botnet detection methods, the author puts forward a new sight of applying distributed threat intelligence sharing system to P2P botnet detection. This system aims to fight against distributed botnet by using distributed methods itself, and then to detect botnet in real time. To fulfill the goal of botnet detection, there are 3 important parts: the threat intelligence sharing and evaluating system, the BAV quantitative TI model, and the AHP and HMM based analysis algorithm. Theoretically, this method should work on different types of distributed cyber threat besides P2P botnet.
Information systems are becoming more and more complex and closely linked. These systems are encountering an enormous amount of nefarious traffic while ensuring real - time connectivity. Therefore, a defense method needs to be in place. One of the commonly used tools for network security is intrusion detection systems (IDS). An IDS tries to identify fraudulent activity using predetermined signatures or pre-established user misbehavior while monitoring incoming traffic. Intrusion detection systems based on signature and behavior cannot detect new attacks and fall when small behavior deviations occur. Many researchers have proposed various approaches to intrusion detection using machine learning techniques as a new and promising tool to remedy this problem. In this paper, the authors present a combination of two machine learning methods, unsupervised clustering followed by a supervised classification framework as a Fast, highly scalable and precise packets classification system. This model's performance is assessed on the new proposed dataset by the Canadian Institute for Cyber security and the University of New Brunswick (CICIDS2017). The overall process was fast, showing high accuracy classification results.
Community structure detection in social networks has become a big challenge. Various methods in the literature have been presented to solve this challenge. Recently, several methods have also been proposed to solve this challenge based on a mapping-reduction model, in which data and algorithms are divided between different process nodes so that the complexity of time and memory of community detection in large social networks is reduced. In this paper, a mapping-reduction model is first proposed to detect the structure of communities. Then the proposed framework is rewritten according to a new mechanism called distributed cache memory; distributed cache memory can store different values associated with different keys and, if necessary, put them at different computational nodes. Finally, the proposed rewritten framework has been implemented using SPARK tools and its implementation results have been reported on several major social networks. The performed experiments show the effectiveness of the proposed framework by varying the values of various parameters.
Intrusion detection is one essential tool towards building secure and trustworthy Cloud computing environment, given the ubiquitous presence of cyber attacks that proliferate rapidly and morph dynamically. In our current working paradigm of resource, platform and service consolidations, Cloud Computing provides a significant improvement in the cost metrics via dynamic provisioning of IT services. Since almost all cloud computing networks lean on providing their services through Internet, they are prone to experience variety of security issues. Therefore, in cloud environments, it is necessary to deploy an Intrusion Detection System (IDS) to detect new and unknown attacks in addition to signature based known attacks, with high accuracy. In our deliberation we assume that a system or a network ``anomalous'' event is synonymous to an ``intrusion'' event when there is a significant departure in one or more underlying system or network activities. There are couple of recently proposed ideas that aim to develop a hybrid detection mechanism, combining advantages of signature-based detection schemes with the ability to detect unknown attacks based on anomalies. In this work, we propose a network based anomaly detection system at the Cloud Hypervisor level that utilizes a hybrid algorithm: a combination of K-means clustering algorithm and SVM classification algorithm, to improve the accuracy of the anomaly detection system. Dataset from UNSW-NB15 study is used to evaluate the proposed approach and results are compared with previous studies. The accuracy for our proposed K-means clustering model is slightly higher than others. However, the accuracy we obtained from the SVM model is still low for supervised techniques.
Analyzing clustering results may lead to the privacy disclosure issue in big data mining. In this paper, we put forward a differential privacy-based protecting data preprocessing method for distance-based clustering. Firstly, the data distortion technique differential privacy is used to prevent the distances in distance-based clustering from disclosing the relationships. Differential privacy may affect the clustering results while protecting privacy. Then an adaptive privacy budget parameter adjustment mechanism is applied for keeping the balance between the privacy protection and the clustering results. By solving the maximum and minimum problems, the differential privacy budget parameter can be obtained for different clustering algorithms. Finally, we conduct extensive experiments to evaluate the performance of our proposed method. The results demonstrate that our method can provide privacy protection with precise clustering results.
Everyday., the DoS/DDoS attacks are increasing all over the world and the ways attackers are using changing continuously. This increase and variety on the attacks are affecting the governments, institutions, organizations and corporations in a bad way. Every successful attack is causing them to lose money and lose reputation in return. This paper presents an introduction to a method which can show what the attack and where the attack based on. This is tried to be achieved with using clustering algorithm DBSCAN on network traffic because of the change and variety in attack vectors.
Information centric network (ICN) based Mobile Edge Computing (MEC) network has drawn growing attentions in recent years. The distributed network architecture brings new security problems, especially the identity security problem. Because of the cloud platform deployed on the edge of the MEC network, multiple channel attributes can be easily obtained and processed. Thus this paper proposes a multiple channel attributes based spoofing detection mechanism. To further reduce the complexity, we also propose an improved clustering algorithm. The simulation results indicate that the proposed spoofing detection method can provide near-optimal performance with extremely low complexity.
With the exponential hike in cyber threats, organizations are now striving for better data mining techniques in order to analyze security logs received from their IT infrastructures to ensure effective and automated cyber threat detection. Machine Learning (ML) based analytics for security machine data is the next emerging trend in cyber security, aimed at mining security data to uncover advanced targeted cyber threats actors and minimizing the operational overheads of maintaining static correlation rules. However, selection of optimal machine learning algorithm for security log analytics still remains an impeding factor against the success of data science in cyber security due to the risk of large number of false-positive detections, especially in the case of large-scale or global Security Operations Center (SOC) environments. This fact brings a dire need for an efficient machine learning based cyber threat detection model, capable of minimizing the false detection rates. In this paper, we are proposing optimal machine learning algorithms with their implementation framework based on analytical and empirical evaluations of gathered results, while using various prediction, classification and forecasting algorithms.
SYN flood attack is a very serious cause for disturbing the normal traffic in MANET. SYN flood attack takes advantage of the congestion caused by populating a specific route with unwanted traffic that results in the denial of services. In this paper, we proposed an Adaptive Detection Mechanism using Artificial Intelligence technique named as SYN Flood Attack Detection Based on Bayes Estimator (SFADBE) for Mobile ad hoc Network (MANET). In SFADBE, every node will gather the current information of the available channel and the secure and congested free (Best Path) channel for the traffic is selected. Due to constant congestion, the availability of the data path can be the cause of SYN Flood attack. By using this AI technique, we experienced the SYN Flood detection probability more than the others did. Simulation results show that our proposed SFADBE algorithm is low cost and robust as compared to the other existing approaches.
Rapid development of internet and network technologies has led to considerable increase in number of attacks. Intrusion detection system is one of the important ways to achieve high security in computer networks. However, it have curse of dimensionality which tends to increase time complexity and decrease resource utilization. To improve the ability of detecting anomaly intrusions, a combined algorithm is proposed based on Weighted Fuzzy C-Mean Clustering Algorithm (WFCM) and Fuzzy logic. Decision making is performed in two stages. In the first stage, WFCM algorithm is applied to reduce the input data space. The reduced dataset is then fed to Fuzzy Logic scheme to build the fuzzy sets, membership function and the rules that decide whether an instance represents an anomaly or not.
The IRC botnet is the earliest and most significant botnet group that has a significant impact. Its characteristic is to control multiple zombies hosts through the IRC protocol and constructing command control channels. Relevant research analyzes the large amount of network traffic generated by command interaction between the botnet client and the C&C server. Packet capture traffic monitoring on the network is currently a more effective detection method, but this information does not reflect the essential characteristics of the IRC botnet. The increase in the amount of erroneous judgments has often occurred. To identify whether the botnet control server is a homogenous botnet, dynamic network communication characteristic curves are extracted. For unequal time series, dynamic time warping distance clustering is used to identify the homologous botnets by category, and in order to improve detection. Speed, experiments will use SAX to reduce the dimension of the extracted curve, reducing the time cost without reducing the accuracy.
We present an effective machine learning method for malicious activity detection in enterprise security logs. Our method involves feature engineering, or generating new features by applying operators on features of the raw data. We generate DNF formulas from raw features, extract Boolean functions from them, and leverage Fourier analysis to generate new parity features and rank them based on their highest Fourier coefficients. We demonstrate on real enterprise data sets that the engineered features enhance the performance of a wide range of classifiers and clustering algorithms. As compared to classification of raw data features, the engineered features achieve up to 50.6% improvement in malicious recall, while sacrificing no more than 0.47% in accuracy. We also observe better isolation of malicious clusters, when performing clustering on engineered features. In general, a small number of engineered features achieve higher performance than raw data features according to our metrics of interest. Our feature engineering method also retains interpretability, an important consideration in cyber security applications.
As a result of the globalization of integrated circuits (ICs) design and fabrication process, ICs are becoming vulnerable to hardware Trojans. Most of the existing hardware Trojan detection works suppose that the testing stage is trustworthy. However, testing parties may conspire with malicious attackers to modify the results of hardware Trojan detection. In this paper, we propose a trusted and robust hardware Trojan detection framework against untrustworthy testing parties exploiting a novel clustering ensemble method. The proposed technique can expose the malicious modifications on Trojan detection results introduced by untrustworthy testing parties. Compared with the state-of-the-art detection methods, the proposed technique does not require fabricated golden chips or simulated golden models. The experiment results on ISCAS89 benchmark circuits show that the proposed technique can resist modifications robustly and detect hardware Trojans with decent accuracy (up to 91%).