Visible to the public Biblio

Filters: Keyword is convolution neural network  [Clear All Filters]
2023-07-21
Giri, Sarwesh, Singh, Gurchetan, Kumar, Babul, Singh, Mehakpreet, Vashisht, Deepanker, Sharma, Sonu, Jain, Prince.  2022.  Emotion Detection with Facial Feature Recognition Using CNN & OpenCV. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :230—232.
Emotion Detection through Facial feature recognition is an active domain of research in the field of human-computer interaction (HCI). Humans are able to share multiple emotions and feelings through their facial gestures and body language. In this project, in order to detect the live emotions from the human facial gesture, we will be using an algorithm that allows the computer to automatically detect the facial recognition of human emotions with the help of Convolution Neural Network (CNN) and OpenCV. Ultimately, Emotion Detection is an integration of obtained information from multiple patterns. If computers will be able to understand more of human emotions, then it will mutually reduce the gap between humans and computers. In this research paper, we will demonstrate an effective way to detect emotions like neutral, happy, sad, surprise, angry, fear, and disgust from the frontal facial expression of the human in front of the live webcam.
Udeh, Chinonso Paschal, Chen, Luefeng, Du, Sheng, Li, Min, Wu, Min.  2022.  A Co-regularization Facial Emotion Recognition Based on Multi-Task Facial Action Unit Recognition. 2022 41st Chinese Control Conference (CCC). :6806—6810.
Facial emotion recognition helps feed the growth of the future artificial intelligence with the development of emotion recognition, learning, and analysis of different angles of a human face and head pose. The world's recent pandemic gave rise to the rapid installment of facial recognition for fewer applications, while emotion recognition is still within the experimental boundaries. The current challenges encountered with facial emotion recognition (FER) are the difference between background noises. Since today's world shows us that humans soon need robotics in the most significant role of human perception, attention, memory, decision-making, and human-robot interaction (HRI) needs employees. By merging the head pose as a combination towards the FER to boost the robustness in understanding emotions using the convolutional neural networks (CNN). The stochastic gradient descent with a comprehensive model is adopted by applying multi-task learning capable of implicit parallelism, inherent and better global optimizer in finding better network weights. After executing a multi-task learning model using two independent datasets, the experiment with the FER and head pose learning multi-views co-regularization frameworks were subsequently merged with validation accuracy.
2023-04-14
Priya, A, Ganesh, Abishek, Akil Prasath, R, Jeya Pradeepa, K.  2022.  Cracking CAPTCHAs using Deep Learning. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :437–443.
In this decade, digital transactions have risen exponentially demanding more reliable and secure authentication systems. CAPTCHA (Completely Automated Public Turing Test to tell Computers and Humans Apart) system plays a major role in these systems. These CAPTCHAs are available in character sequence, picture-based, and audio-based formats. It is very essential that these CAPTCHAs should be able to differentiate a computer program from a human precisely. This work tests the strength of text-based CAPTCHAs by breaking them using an algorithm built on CNN (Convolution Neural Network) and RNN (Recurrent Neural Network). The algorithm is designed in such a way as an attempt to break the security features designers have included in the CAPTCHAs to make them hard to be cracked by machines. This algorithm is tested against the synthetic dataset generated in accordance with the schemes used in popular websites. The experiment results exhibit that the model has shown a considerable performance against both the synthetic and real-world CAPTCHAs.
2022-11-08
Wshah, Safwan, Shadid, Reem, Wu, Yuhao, Matar, Mustafa, Xu, Beilei, Wu, Wencheng, Lin, Lei, Elmoudi, Ramadan.  2020.  Deep Learning for Model Parameter Calibration in Power Systems. 2020 IEEE International Conference on Power Systems Technology (POWERCON). :1–6.
In power systems, having accurate device models is crucial for grid reliability, availability, and resiliency. Existing model calibration methods based on mathematical approaches often lead to multiple solutions due to the ill-posed nature of the problem, which would require further interventions from the field engineers in order to select the optimal solution. In this paper, we present a novel deep-learning-based approach for model parameter calibration in power systems. Our study focused on the generator model as an example. We studied several deep-learning-based approaches including 1-D Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU), which were trained to estimate model parameters using simulated Phasor Measurement Unit (PMU) data. Quantitative evaluations showed that our proposed methods can achieve high accuracy in estimating the model parameters, i.e., achieved a 0.0079 MSE on the testing dataset. We consider these promising results to be the basis for further exploration and development of advanced tools for model validation and calibration.
2022-08-12
R, Prasath, Rajan, Rajesh George.  2021.  Autonomous Application in Requirements Analysis of Information System Development for Producing a Design Model. 2021 2nd International Conference on Communication, Computing and Industry 4.0 (C2I4). :1—8.
The main technology of traditional information security is firewall, intrusion detection and anti-virus software, which is used in the first anti-outer defence, the first anti-service terminal defence terminal passive defence ideas, the complexity and complexity of these security technologies not only increase the complexity of the autonomous system, reduce the efficiency of the system, but also cannot solve the security problem of the information system, and cannot satisfy the security demand of the information system. After a significant stretch of innovative work, individuals utilize the secret word innovation, network security innovation, set forward the idea “confided in figuring” in view of the equipment security module support, Trusted processing from changing the customary protection thoughts, center around the safety efforts taken from the terminal to forestall framework assaults, from the foundation of the stage, the acknowledgment of the security of data frameworks. Believed figuring is chiefly worried about the security of the framework terminal, utilizing a progression of safety efforts to ensure the protection of clients to work on the security of independent frameworks. Its principle plan thought is implanted in a typical machine to oppose altering the equipment gadget - confided in stage module as the base of the trust, the utilization of equipment and programming innovation to join the trust of the base of trust through the trust bind level to the entire independent framework, joined with the security of information stockpiling insurance, client validation and stage respectability of the three significant safety efforts guarantee that the terminal framework security and unwavering quality, to guarantee that the terminal framework is consistently in a condition of conduct anticipated.
2022-07-05
Liu, Weida, Fang, Jian.  2021.  Facial Expression Recognition Method Based on Cascade Convolution Neural Network. 2021 International Wireless Communications and Mobile Computing (IWCMC). :1012—1015.
In view of the problem that the convolution neural network research of facial expression recognition ignores the internal relevance of the key links, which leads to the low accuracy and speed of facial expression recognition, and can't meet the recognition requirements, a series cascade algorithm model for expression recognition of educational robot is constructed and enables the educational robot to recognize multiple students' facial expressions simultaneously, quickly and accurately in the process of movement, in the balance of the accuracy, rapidity and stability of the algorithm, based on the cascade convolution neural network model. Through the CK+ and Oulu-CASIA expression recognition database, the expression recognition experiments of this algorithm are compared with the commonly used STM-ExpLet and FN2EN cascade network algorithms. The results show that the accuracy of the expression recognition method is more than 90%. Compared with the other two commonly used cascade convolution neural network methods, the accuracy of expression recognition is significantly improved.
2022-01-31
Haney, Oliver, ElAarag, Hala.  2021.  Secure Suite: An Open-Source Service for Internet Security. SoutheastCon 2021. :1—7.
Internet security is constantly at risk as a result of the fast developing and highly sophisticated exploitation methods. These attacks use numerous media to take advantage of the most vulnerable of Internet users. Phishing, spam calling, unsecure content and other means of intrusion threaten Internet users every day. In order to maintain the security and privacy of sensitive user data, the user must pay for services that include the storage and generation of secure passwords, monitoring internet traffic to discourage navigation to malicious websites, among other services. Some people do not have the money to purchase privacy protection services and others find convoluted euphemisms baked into privacy policies quite confusing. In response to this problem, we developed an Internet security software package, Secure Suite, which we provide as open source and hence free of charge. Users can easily deploy and manage Secure Suite. It is composed of a password manager, a malicious URL detection service, dubbed MalURLNet, a URL extender, data visualization tools, a browser extension to interact with the web app, and utility tools to maintain data integrity. MalURLNet is one of the main components of Secure Suite. It utilizes deep learning and other open-source software to mitigate security threats by identifying malicious URLs. We exhaustively tested our proposed MalURLNet service. Our studies show that MalURLNet outperforms four other well-known URL classifiers in terms of accuracy, loss, precision, recall, and F1-Score.
2021-08-31
Manavi, Farnoush, Hamzeh, Ali.  2020.  A New Method for Ransomware Detection Based on PE Header Using Convolutional Neural Networks. 2020 17th International ISC Conference on Information Security and Cryptology (ISCISC). :82–87.
With the spread of information technology in human life, data protection is a critical task. On the other hand, malicious programs are developed, which can manipulate sensitive and critical data and restrict access to this data. Ransomware is an example of such a malicious program that encrypts data, restricts users' access to the system or their data, and then request a ransom payment. Many types of research have been proposed for ransomware detection. Most of these methods attempt to identify ransomware by relying on program behavior during execution. The main weakness of these methods is that it is not clear how long the program should be monitored to show its real behavior. Therefore, sometimes, these researches cannot early detect ransomware. In this paper, a new method for ransomware detection is proposed that does not require running the program and uses the PE header of the executable files. To extract effective features from the PE header files, an image based on PE header is constructed. Then, according to the advantages of Convolutional Neural Networks in extracting features from images and classifying them, CNN is used. The proposed method achieves 93.33% accuracy. Our results indicate the usefulness and practicality method for ransomware detection.
2021-03-29
Al-Janabi, S. I. Ali, Al-Janabi, S. T. Faraj, Al-Khateeb, B..  2020.  Image Classification using Convolution Neural Network Based Hash Encoding and Particle Swarm Optimization. 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI). :1–5.
Image Retrieval (IR) has become one of the main problems facing computer society recently. To increase computing similarities between images, hashing approaches have become the focus of many programmers. Indeed, in the past few years, Deep Learning (DL) has been considered as a backbone for image analysis using Convolutional Neural Networks (CNNs). This paper aims to design and implement a high-performance image classifier that can be used in several applications such as intelligent vehicles, face recognition, marketing, and many others. This work considers experimentation to find the sequential model's best configuration for classifying images. The best performance has been obtained from two layers' architecture; the first layer consists of 128 nodes, and the second layer is composed of 32 nodes, where the accuracy reached up to 0.9012. The proposed classifier has been achieved using CNN and the data extracted from the CIFAR-10 dataset by the inception model, which are called the Transfer Values (TRVs). Indeed, the Particle Swarm Optimization (PSO) algorithm is used to reduce the TRVs. In this respect, the work focus is to reduce the TRVs to obtain high-performance image classifier models. Indeed, the PSO algorithm has been enhanced by using the crossover technique from genetic algorithms. This led to a reduction of the complexity of models in terms of the number of parameters used and the execution time.
2020-12-11
Huang, Y., Jing, M., Tang, H., Fan, Y., Xue, X., Zeng, X..  2019.  Real-Time Arbitrary Style Transfer with Convolution Neural Network. 2019 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). :65—66.

Style transfer is a research hotspot in computer vision. Up to now, it is still a challenge although many researches have been conducted on it for high quality style transfer. In this work, we propose an algorithm named ASTCNN which is a real-time Arbitrary Style Transfer Convolution Neural Network. The ASTCNN consists of two independent encoders and a decoder. The encoders respectively extract style and content features from style and content and the decoder generates the style transferred image images. Experimental results show that ASTCNN achieves higher quality output image than the state-of-the-art style transfer algorithms and the floating point computation of ASTCNN is 23.3% less than theirs.

Hassan, S. U., Khan, M. Zeeshan, Khan, M. U. Ghani, Saleem, S..  2019.  Robust Sound Classification for Surveillance using Time Frequency Audio Features. 2019 International Conference on Communication Technologies (ComTech). :13—18.

Over the years, technology has reformed the perception of the world related to security concerns. To tackle security problems, we proposed a system capable of detecting security alerts. System encompass audio events that occur as an outlier against background of unusual activity. This ambiguous behaviour can be handled by auditory classification. In this paper, we have discussed two techniques of extracting features from sound data including: time-based and signal based features. In first technique, we preserve time-series nature of sound, while in other signal characteristics are focused. Convolution neural network is applied for categorization of sound. Major aim of research is security challenges, so we have generated data related to surveillance in addition to available datasets such as UrbanSound 8k and ESC-50 datasets. We have achieved 94.6% accuracy for proposed methodology based on self-generated dataset. Improved accuracy on locally prepared dataset demonstrates novelty in research.

2020-12-07
Li, Y., Zhang, T., Han, X., Qi, Y..  2018.  Image Style Transfer in Deep Learning Networks. 2018 5th International Conference on Systems and Informatics (ICSAI). :660–664.

Since Gatys et al. proved that the convolution neural network (CNN) can be used to generate new images with artistic styles by separating and recombining the styles and contents of images. Neural Style Transfer has attracted wide attention of computer vision researchers. This paper aims to provide an overview of the style transfer application deep learning network development process, and introduces the classical style migration model, on the basis of the research on the migration of style of the deep learning network for collecting and organizing, and put forward related to gathered during the investigation of the problem solution, finally some classical model in the image style to display and compare the results of migration.

2020-10-29
Vi, Bao Ngoc, Noi Nguyen, Huu, Nguyen, Ngoc Tran, Truong Tran, Cao.  2019.  Adversarial Examples Against Image-based Malware Classification Systems. 2019 11th International Conference on Knowledge and Systems Engineering (KSE). :1—5.

Malicious software, known as malware, has become urgently serious threat for computer security, so automatic mal-ware classification techniques have received increasing attention. In recent years, deep learning (DL) techniques for computer vision have been successfully applied for malware classification by visualizing malware files and then using DL to classify visualized images. Although DL-based classification systems have been proven to be much more accurate than conventional ones, these systems have been shown to be vulnerable to adversarial attacks. However, there has been little research to consider the danger of adversarial attacks to visualized image-based malware classification systems. This paper proposes an adversarial attack method based on the gradient to attack image-based malware classification systems by introducing perturbations on resource section of PE files. The experimental results on the Malimg dataset show that by a small interference, the proposed method can achieve success attack rate when challenging convolutional neural network malware classifiers.

2020-06-19
Liu, Keng-Cheng, Hsu, Chen-Chien, Wang, Wei-Yen, Chiang, Hsin-Han.  2019.  Facial Expression Recognition Using Merged Convolution Neural Network. 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE). :296—298.

In this paper, a merged convolution neural network (MCNN) is proposed to improve the accuracy and robustness of real-time facial expression recognition (FER). Although there are many ways to improve the performance of facial expression recognition, a revamp of the training framework and image preprocessing renders better results in applications. When the camera is capturing images at high speed, however, changes in image characteristics may occur at certain moments due to the influence of light and other factors. Such changes can result in incorrect recognition of human facial expression. To solve this problem, we propose a statistical method for recognition results obtained from previous images, instead of using the current recognition output. Experimental results show that the proposed method can satisfactorily recognize seven basic facial expressions in real time.

2020-01-21
Singh, Malvika, Mehtre, B.M., Sangeetha, S..  2019.  User Behavior Profiling Using Ensemble Approach for Insider Threat Detection. 2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA). :1–8.

The greatest threat towards securing the organization and its assets are no longer the attackers attacking beyond the network walls of the organization but the insiders present within the organization with malicious intent. Existing approaches helps to monitor, detect and prevent any malicious activities within an organization's network while ignoring the human behavior impact on security. In this paper we have focused on user behavior profiling approach to monitor and analyze user behavior action sequence to detect insider threats. We present an ensemble hybrid machine learning approach using Multi State Long Short Term Memory (MSLSTM) and Convolution Neural Networks (CNN) based time series anomaly detection to detect the additive outliers in the behavior patterns based on their spatial-temporal behavior features. We find that using Multistate LSTM is better than basic single state LSTM. The proposed method with Multistate LSTM can successfully detect the insider threats providing the AUC of 0.9042 on train data and AUC of 0.9047 on test data when trained with publically available dataset for insider threats.

2019-12-30
Liu, Keng-Cheng, Hsu, Chen-Chien, Wang, Wei-Yen, Chiang, Hsin-Han.  2019.  Real-Time Facial Expression Recognition Based on CNN. 2019 International Conference on System Science and Engineering (ICSSE). :120–123.
In this paper, we propose a method for improving the robustness of real-time facial expression recognition. Although there are many ways to improve the accuracy of facial expression recognition, a revamp of the training framework and image preprocessing allow better results in applications. One existing problem is that when the camera is capturing images in high speed, changes in image characteristics may occur at certain moments due to the influence of light and other factors. Such changes can result in incorrect recognition of the human facial expression. To solve this problem for smooth system operation and maintenance of recognition speed, we take changes in image characteristics at high speed capturing into account. The proposed method does not use the immediate output for reference, but refers to the previous image for averaging to facilitate recognition. In this way, we are able to reduce interference by the characteristics of the images. The experimental results show that after adopting this method, overall robustness and accuracy of facial expression recognition have been greatly improved compared to those obtained by only the convolution neural network (CNN).
2019-04-01
Wang, M., Yang, Y., Zhu, M., Liu, J..  2018.  CAPTCHA Identification Based on Convolution Neural Network. 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC). :364–368.
The CAPTCHA is an effective method commonly used in live interactive proofs on the Internet. The widely used CAPTCHAs are text-based schemes. In this paper, we document how we have broken such text-based scheme used by a website CAPTCHA. We use the sliding window to segment 1001 pieces of CAPTCHA to get 5900 images with single-character useful information, a total of 25 categories. In order to make the convolution neural network learn more image features, we augmented the data set to get 129924 pictures. The data set is trained and tested in AlexNet and GoogLeNet to get the accuracy of 87.45% and 98.92%, respectively. The experiment shows that the optimized network parameters can make the accuracy rate up to 92.7% in AlexNet and 98.96% in GoogLeNet.
2018-12-03
Yang, Xinli, Li, Ming, Zhao, ShiLin.  2017.  Facial Expression Recognition Algorithm Based on CNN and LBP Feature Fusion. Proceedings of the 2017 International Conference on Robotics and Artificial Intelligence. :33–38.

When a complex scene such as rotation within a plane is encountered, the recognition rate of facial expressions will decrease much. A facial expression recognition algorithm based on CNN and LBP feature fusion is proposed in this paper. Firstly, according to the problem of the lack of feature expression ability of CNN in the process of expression recognition, a CNN model was designed. The model is composed of structural units that have two successive convolutional layers followed by a pool layer, which can improve the expressive ability of CNN. Then, the designed CNN model was used to extract the facial expression features, and local binary pattern (LBP) features with rotation invariance were fused. To a certain extent, it makes up for the lack of CNN sensitivity to in-plane rotation changes. The experimental results show that the proposed method improves the expression recognition rate under the condition of plane rotation to a certain extent and has better robustness.

2018-04-04
Wu, F., Wang, J., Liu, J., Wang, W..  2017.  Vulnerability detection with deep learning. 2017 3rd IEEE International Conference on Computer and Communications (ICCC). :1298–1302.
Vulnerability detection is an import issue in information system security. In this work, we propose the deep learning method for vulnerability detection. We present three deep learning models, namely, convolution neural network (CNN), long short term memory (LSTM) and convolution neural network — long short term memory (CNN-LSTM). In order to test the performance of our approach, we collected 9872 sequences of function calls as features to represent the patterns of binary programs during their execution. We apply our deep learning models to predict the vulnerabilities of these binary programs based on the collected data. The experimental results show that the prediction accuracy of our proposed method reaches 83.6%, which is superior to that of traditional method like multi-layer perceptron (MLP).