Visible to the public Biblio

Found 101 results

Filters: Keyword is Systematics  [Clear All Filters]
2023-03-31
Islam, Raisa, Hossen, Mohammad Sahinur, Shin, Dongwan.  2022.  A Mapping Study on Privacy Attacks in Big Data and IoT. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :1158–1163.
Application domains like big data and IoT require a lot of user data collected and analyzed to extract useful information, and those data might include user's sensitive and personal information. Hence, it is strongly required to ensure the privacy of user data before releasing them in the public space. Since the fields of IoT and big data are constantly evolving with new types of privacy attacks and prevention mechanisms, there is an urgent need for new research and surveys to develop an overview of the state-of-art. We conducted a systematic mapping study on selected papers related to user privacy in IoT and big data, published between 2010 to 2021. This study focuses on identifying the main privacy objectives, attacks and measures taken to prevent the attacks in the two application domains. Additionally, a visualized classification of the existing attacks is presented along with privacy metrics to draw similarities and dissimilarities among different attacks.
ISSN: 2162-1241
2023-03-17
Lee, Sun-Jin, Shim, Hye-Yeon, Lee, Yu-Rim, Park, Tae-Rim, Park, So-Hyun, Lee, Il-Gu.  2022.  Study on Systematic Ransomware Detection Techniques. 2022 24th International Conference on Advanced Communication Technology (ICACT). :297–301.
Cyberattacks have been progressed in the fields of Internet of Things, and artificial intelligence technologies using the advanced persistent threat (APT) method recently. The damage caused by ransomware is rapidly spreading among APT attacks, and the range of the damages of individuals, corporations, public institutions, and even governments are increasing. The seriousness of the problem has increased because ransomware has been evolving into an intelligent ransomware attack that spreads over the network to infect multiple users simultaneously. This study used open source endpoint detection and response tools to build and test a framework environment that enables systematic ransomware detection at the network and system level. Experimental results demonstrate that the use of EDR tools can quickly extract ransomware attack features and respond to attacks.
ISSN: 1738-9445
2023-03-03
Hong, Geng, Yang, Zhemin, Yang, Sen, Liaoy, Xiaojing, Du, Xiaolin, Yang, Min, Duan, Haixin.  2022.  Analyzing Ground-Truth Data of Mobile Gambling Scams. 2022 IEEE Symposium on Security and Privacy (SP). :2176–2193.
With the growth of mobile computing techniques, mobile gambling scams have seen a rampant increase in the recent past. In mobile gambling scams, miscreants deliver scamming messages via mobile instant messaging, host scam gambling platforms on mobile apps, and adopt mobile payment channels. To date, there is little quantitative knowledge about how this trending cybercrime operates, despite causing daily fraud losses estimated at more than \$\$\$522,262 USD. This paper presents the first empirical study based on ground-truth data of mobile gambling scams, associated with 1,461 scam incident reports and 1,487 gambling scam apps, spanning from January 1, 2020 to December 31, 2020. The qualitative and quantitative analysis of this ground-truth data allows us to characterize the operational pipeline and full fraud kill chain of mobile gambling scams. In particular, we study the social engineering tricks used by scammers and reveal their effectiveness. Our work provides a systematic analysis of 1,068 confirmed Android and 419 iOS scam apps, including their development frameworks, declared permissions, compatibility, and backend network infrastructure. Perhaps surprisingly, our study unveils that public online app generators have been abused to develop gambling scam apps. Our analysis reveals several payment channels (ab)used by gambling scam app and uncovers a new type of money mule-based payment channel with the average daily gambling deposit of \$\$\$400,000 USD. Our findings enable a better understanding of the mobile gambling scam ecosystem, and suggest potential avenues to disrupt these scam activities.
ISSN: 2375-1207
Yuan, Wen.  2022.  Development of Key Technologies of Legal Case Management Information System Considering QoS Optimization. 2022 International Conference on Electronics and Renewable Systems (ICEARS). :693–696.
This paper conducts the development of the key technologies of the legal case management information system considering QoS optimization. The designed system administrator can carry out that the all-round management of the system, including account management, database management, security setting management, core data entry management, and data statistics management. With this help, the QoS optimization model is then integrated to improve the systematic performance of the system as the key technology. Similar to the layering in the data source, the data set is composed of the fields of the data set, and contains the relevant information of the attribute fields of various entity element categories. Furthermore, the designed system is analyzed and implemented on the public data sets to show the results.
2023-02-03
Patil, Kanchan, Arra, Sai Rohith.  2022.  Detection of Phishing and User Awareness Training in Information Security: A Systematic Literature Review. 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM). 2:780–786.
Phishing is a method of online fraud where attackers are targeted to gain access to the computer systems for monetary benefits or personal gains. In this case, the attackers pose themselves as legitimate entities to gain the users' sensitive information. Phishing has been significant concern over the past few years. The firms are recording an increase in phishing attacks primarily aimed at the firm's intellectual property and the employees' sensitive data. As a result, these attacks force firms to spend more on information security, both in technology-centric and human-centric approaches. With the advancements in cyber-security in the last ten years, many techniques evolved to detect phishing-related activities through websites and emails. This study focuses on the latest techniques used for detecting phishing attacks, including the usage of Visual selection features, Machine Learning (ML), and Artificial Intelligence (AI) to see the phishing attacks. New strategies for identifying phishing attacks are evolving, but limited standardized knowledge on phishing identification and mitigation is accessible from user awareness training. So, this study also focuses on the role of security-awareness movements to minimize the impact of phishing attacks. There are many approaches to train the user regarding these attacks, such as persona-centred training, anti-phishing techniques, visual discrimination training and the usage of spam filters, robust firewalls and infrastructure, dynamic technical defense mechanisms, use of third-party certified software to mitigate phishing attacks from happening. Therefore, the purpose of this paper is to carry out a systematic analysis of literature to assess the state of knowledge in prominent scientific journals on the identification and prevention of phishing. Forty-three journal articles with the perspective of phishing detection and prevention through awareness training were reviewed from 2011 to 2020. This timely systematic review also focuses on the gaps identified in the selected primary studies and future research directions in this area.
2023-02-02
Saarinen, Markku-Juhani O..  2022.  SP 800–22 and GM/T 0005–2012 Tests: Clearly Obsolete, Possibly Harmful. 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). :31–37.
When it comes to cryptographic random number generation, poor understanding of the security requirements and “mythical aura” of black-box statistical testing frequently leads it to be used as a substitute for cryptanalysis. To make things worse, a seemingly standard document, NIST SP 800–22, describes 15 statistical tests and suggests that they can be used to evaluate random and pseudorandom number generators in cryptographic applications. The Chi-nese standard GM/T 0005–2012 describes similar tests. These documents have not aged well. The weakest pseudorandom number generators will easily pass these tests, promoting false confidence in insecure systems. We strongly suggest that SP 800–22 be withdrawn by NIST; we consider it to be not just irrelevant but actively harmful. We illustrate this by discussing the “reference generators” contained in the SP 800–22 document itself. None of these generators are suitable for modern cryptography, yet they pass the tests. For future development, we suggest focusing on stochastic modeling of entropy sources instead of model-free statistical tests. Random bit generators should also be reviewed for potential asymmetric backdoors via trapdoor one-way functions, and for security against quantum computing attacks.
Schuckert, Felix, Langweg, Hanno, Katt, Basel.  2022.  Systematic Generation of XSS and SQLi Vulnerabilities in PHP as Test Cases for Static Code Analysis. 2022 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :261–268.
Synthetic static code analysis test suites are important to test the basic functionality of tools. We present a framework that uses different source code patterns to generate Cross Site Scripting and SQL injection test cases. A decision tree is used to determine if the test cases are vulnerable. The test cases are split into two test suites. The first test suite contains 258,432 test cases that have influence on the decision trees. The second test suite contains 20 vulnerable test cases with different data flow patterns. The test cases are scanned with two commercial static code analysis tools to show that they can be used to benchmark and identify problems of static code analysis tools. Expert interviews confirm that the decision tree is a solid way to determine the vulnerable test cases and that the test suites are relevant.
Yin, Tingting, Zhang, Chao, Ni, Yuandong, Wu, Yixiong, Wong, Taiyu, Luo, Xiapu, Li, Zheming, Guo, Yu.  2022.  An Empirical Study on Implicit Constraints in Smart Contract Static Analysis. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). :31–32.

Smart contracts are usually financial-related, which makes them attractive attack targets. Many static analysis tools have been developed to facilitate the contract audit process, but not all of them take account of two special features of smart contracts: (1) The external variables, like time, are constrained by real-world factors; (2) The internal variables persist between executions. Since these features import implicit constraints into contracts, they significantly affect the performance of static tools, such as causing errors in reachability analysis and resulting in false positives. In this paper, we conduct a systematic study on implicit constraints from three aspects. First, we summarize the implicit constraints in smart contracts. Second, we evaluate the impact of such constraints on the state-of-the-art static tools. Third, we propose a lightweight but effective mitigation method named ConSym to deal with such constraints and integrate it into OSIRIS. The evaluation result shows that ConSym can filter out 96% of false positives and reduce false negatives by two-thirds.

2023-01-20
Li, Ruixiao, Bhattacharjee, Shameek, Das, Sajal K., Yamana, Hayato.  2022.  Look-Up Table based FHE System for Privacy Preserving Anomaly Detection in Smart Grids. 2022 IEEE International Conference on Smart Computing (SMARTCOMP). :108—115.
In advanced metering infrastructure (AMI), the customers' power consumption data is considered private but needs to be revealed to data-driven attack detection frameworks. In this paper, we present a system for privacy-preserving anomaly-based data falsification attack detection over fully homomorphic encrypted (FHE) data, which enables computations required for the attack detection over encrypted individual customer smart meter's data. Specifically, we propose a homomorphic look-up table (LUT) based FHE approach that supports privacy preserving anomaly detection between the utility, customer, and multiple partied providing security services. In the LUTs, the data pairs of input and output values for each function required by the anomaly detection framework are stored to enable arbitrary arithmetic calculations over FHE. Furthermore, we adopt a private information retrieval (PIR) approach with FHE to enable approximate search with LUTs, which reduces the execution time of the attack detection service while protecting private information. Besides, we show that by adjusting the significant digits of inputs and outputs in our LUT, we can control the detection accuracy and execution time of the attack detection, even while using FHE. Our experiments confirmed that our proposed method is able to detect the injection of false power consumption in the range of 11–17 secs of execution time, depending on detection accuracy.
2023-01-13
Kovačević, Ivan, Štengl, Bruno, Groš, Stjepan.  2022.  Systematic review of automatic translation of high-level security policy into firewall rules. 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO). :1063–1068.
Firewalls are security devices that perform network traffic filtering. They are ubiquitous in the industry and are a common method used to enforce organizational security policy. Security policy is specified on a high level of abstraction, with statements such as "web browsing is allowed only on workstations inside the office network", and needs to be translated into low-level firewall rules to be enforceable. There has been a lot of work regarding optimization, analysis and platform independence of firewall rules, but an area that has seen much less success is automatic translation of high-level security policies into firewall rules. In addition to improving rules’ readability, such translation would make it easier to detect errors.This paper surveys of over twenty papers that aim to generate firewall rules according to a security policy specified on a higher level of abstraction. It also presents an overview of similar features in modern firewall systems. Most approaches define specialized domain languages that get compiled into firewall rule sets, with some of them relying on formal specification, ontology, or graphical models. The approaches’ have improved over time, but there are still many drawbacks that need to be solved before wider application.
2023-01-06
Da Costa, Alessandro Monteiro, de Sá, Alan Oliveira, Machado, Raphael C. S..  2022.  Data Acquisition and extraction on mobile devices-A Review. 2022 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT). :294—299.
Forensic Science comprises a set of technical-scientific knowledge used to solve illicit acts. The increasing use of mobile devices as the main computing platform, in particular smartphones, makes existing information valuable for forensics. However, the blocking mechanisms imposed by the manufacturers and the variety of models and technologies make the task of reconstructing the data for analysis challenging. It is worth mentioning that the conclusion of a case requires more than the simple identification of evidence, as it is extremely important to correlate all the data and sources obtained, to confirm a suspicion or to seek new evidence. This work carries out a systematic review of the literature, identifying the different types of existing image acquisition and the main extraction and encryption methods used in smartphones with the Android operating system.
2023-01-05
Saha, Sujan Kumar, Mbongue, Joel Mandebi, Bobda, Christophe.  2022.  Metrics for Assessing Security of System-on-Chip. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :113—116.
Due to the increasing complexity of modern hetero-geneous System-on-Chips (SoC) and the growing vulnerabilities, security risk assessment and quantification is required to measure the trustworthiness of a SoC. This paper describes a systematic approach to model the security risk of a system for malicious hardware attacks. The proposed method uses graph analysis to assess the impact of an attack and the Common Vulnerability Scoring System (CVSS) is used to quantify the security level of the system. To demonstrate the applicability of the proposed metric, we consider two open source SoC benchmarks with different architectures. The overall risk is calculated using the proposed metric by computing the exploitability and impact of attack on critical components of a SoC.
2022-12-20
Levina, Alla, Kamnev, Ivan.  2022.  Protection Metric Model of White-Box Algorithms. 2022 11th Mediterranean Conference on Embedded Computing (MECO). :1–3.
Systems based on WB protection have a limited lifetime, measured in months and sometimes days. Unfortunately, to understand for how long the application will be uncompromised, if possible, only empirically. However, it is possible to make a preliminary assessment of the security of a particular implementation, depending on the methods and their number used in the implementation, it will allow reallocating resources to more effective means of protection.
Gracia, Mulumba Banza, Malele, Vusumuzi, Ndlovu, Sphiwe Promise, Mathonsi, Topside Ehleketani, Maaka, Lebogang, Muchenje, Tonderai.  2022.  6G Security Challenges and Opportunities. 2022 IEEE 13th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT). :339–343.
The Sixth Generation (6G) is currently under development and it is a planned successor of the Fifth Generation (5G). It is a new wireless communication technology expected to have a greater coverage area, significant fast and a higher data rate. The aim of this paper is to examine the literature on challenges and possible solutions of 6G's security, privacy and trust. It uses the systematic literature review technique by searching five research databases for search engines which are precise keywords like “6G,” “6G Wireless communication,” and “sixth generation”. The latter produced a total of 1856 papers, then the security, privacy and trust issues of the 6G wireless communication were extracted. Two security issues, the artificial intelligence and visible light communication, were apparent. In conclusion, there is a need for new paradigms that will provide a clear 6G security solutions.
2022-12-09
Waguie, Francxa Tagne, Al-Turjman, Fadi.  2022.  Artificial Intelligence for Edge Computing Security: A Survey. 2022 International Conference on Artificial Intelligence in Everything (AIE). :446—450.
Edge computing is a prospective notion for expanding the potential of cloud computing. It is vital to maintaining a decent atmosphere free of all forms of security and breaches in order to continue utilizing computer services. The security concerns surrounding the edge computing environment has been impeded as a result of the security issues that surround the area. Many researchers have looked into edge computing security issues, however, not all have thoroughly studied the needs. Security requirements are the goals that specify the capabilities and operations that a process that is carried out by a system in order to eliminate various security flaws. The purpose of this study is to give a complete overview of the many different artificial intelligence technologies that are now being utilized for edge computing security with the intention of aiding research in the future in locating research potential. This article analyzed the most recent research and shed light on the following topics: state-of-the-art techniques used to combat security threats, technological trends used by the method, metrics utilize to assess the techniques' ability, and opportunities of research for future researchers in the area of artificial intelligence for edge computing security.
2022-11-18
Aleksandrov, Mark N., Vasiliev, Victor A., Aleksandrova, Svetlana V..  2021.  Implementation of the Risk-based Approach Methodology in Information Security Management Systems. 2021 International Conference on Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS). :137—139.
Currently, most companies systematically face challenges related to the loss of significant confidential information, including legally significant information, such as personal data of customers. To solve the problem of maintaining the confidentiality, integrity and availability of information, companies are increasingly using the methodology laid down in the basis of the international standard ISO / IEC 27001. Information security risk management is a process of continuous monitoring and systematic analysis of the internal and external environment of the IT environment, associated with the further adoption and implementation of management decisions aimed at reducing the likelihood of an unfavorable result and minimizing possible threats to business caused by the loss of manageability of information that is important for the organization. The article considers the problems and approaches to the development, practical implementation, and methodology of risk management based on the international standard ISO 31000 in the modern information security management system.
2022-10-20
Al-Haija, Qasem Abu.  2021.  On the Security of Cyber-Physical Systems Against Stochastic Cyber-Attacks Models. 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1—6.
Cyber Physical Systems (CPS) are widely deployed and employed in many recent real applications such as automobiles with sensing technology for crashes to protect passengers, automated homes with various smart appliances and control units, and medical instruments with sensing capability of glucose levels in blood to keep track of normal body function. In spite of their significance, CPS infrastructures are vulnerable to cyberattacks due to the limitations in the computing, processing, memory, power, and transmission capabilities for their endpoint/edge appliances. In this paper, we consider a short systematic investigation for the models and techniques of cyberattacks and threats rate against Cyber Physical Systems with multiple subsystems and redundant elements such as, network of computing devices or storage modules. The cyberattacks are assumed to be externally launched against the Cyber Physical System during a prescribed operational time unit following stochastic distribution models such as Poisson probability distribution, negative-binomial probability distribution and other that have been extensively employed in the literature and proved their efficiency in modeling system attacks and threats.
Barr-Smith, Frederick, Ugarte-Pedrero, Xabier, Graziano, Mariano, Spolaor, Riccardo, Martinovic, Ivan.  2021.  Survivalism: Systematic Analysis of Windows Malware Living-Off-The-Land. 2021 IEEE Symposium on Security and Privacy (SP). :1557—1574.
As malware detection algorithms and methods become more sophisticated, malware authors adopt equally sophisticated evasion mechanisms to defeat them. Anecdotal evidence claims Living-Off-The-Land (LotL) techniques are one of the major evasion techniques used in many malware attacks. These techniques leverage binaries already present in the system to conduct malicious actions. We present the first large-scale systematic investigation of the use of these techniques by malware on Windows systems.In this paper, we analyse how common the use of these native system binaries is across several malware datasets, containing a total of 31,805,549 samples. We identify an average 9.41% prevalence. Our results show that the use of LotL techniques is prolific, particularly in Advanced Persistent Threat (APT) malware samples where the prevalence is 26.26%, over twice that of commodity malware.To illustrate the evasive potential of LotL techniques, we test the usage of LotL techniques against several fully patched Windows systems in a local sandboxed environment and show that there is a generalised detection gap in 10 of the most popular anti-virus products.
2022-10-06
Zhang, Zhiyi, Won, Su Yong, Zhang, Lixia.  2021.  Investigating the Design Space for Name Confidentiality in Named Data Networking. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :570–576.
As a fundamental departure from the IP design which encodes source and destination addresses in each packet, Named Data Networking (NDN) directly uses application-defined data names for network layer communications. While bringing important data-centric benefits, the semantic richness of NDN names has also raised confidentiality and privacy concerns. In this paper, we first define the problem of name confidentiality, and then investigate the solution space through a comprehensive examination of all the proposed solutions up to date. Our work shows that the proposed solutions are simply different means to hide the actual data names via a layer of translation; they differ in where and how the translation takes place, which lead to different trade-offs in feasibility, efficiency, security, scalability, and different degrees of adherence to NDN's data-centric communications. Our investigation suggests the feasibility of a systematic design that can enable NDN to provide stronger name confidentiality and user privacy as compared to today's TCP/IP Internet.
2022-09-30
Pan, Qianqian, Wu, Jun, Lin, Xi, Li, Jianhua.  2021.  Side-Channel Analysis-Based Model Extraction on Intelligent CPS: An Information Theory Perspective. 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :254–261.
The intelligent cyber-physical system (CPS) has been applied in various fields, covering multiple critical infras-tructures and human daily life support areas. CPS Security is a major concern and of critical importance, especially the security of the intelligent control component. Side-channel analysis (SCA) is the common threat exploiting the weaknesses in system operation to extract information of the intelligent CPS. However, existing literature lacks the systematic theo-retical analysis of the side-channel attacks on the intelligent CPS, without the ability to quantify and measure the leaked information. To address these issues, we propose the SCA-based model extraction attack on intelligent CPS. First, we design an efficient and novel SCA-based model extraction framework, including the threat model, hierarchical attack process, and the multiple micro-space parallel search enabled weight extraction algorithm. Secondly, an information theory-empowered analy-sis model for side-channel attacks on intelligent CPS is built. We propose a mutual information-based quantification method and derive the capacity of side-channel attacks on intelligent CPS, formulating the amount of information leakage through side channels. Thirdly, we develop the theoretical bounds of the leaked information over multiple attack queries based on the data processing inequality and properties of entropy. These convergence bounds provide theoretical means to estimate the amount of information leaked. Finally, experimental evaluation, including real-world experiments, demonstrates the effective-ness of the proposed SCA-based model extraction algorithm and the information theory-based analysis method in intelligent CPS.
Baptiste, Millot, Julien, Francq, Franck, Sicard.  2021.  Systematic and Efficient Anomaly Detection Framework using Machine Learning on Public ICS Datasets. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :292–297.
Industrial Control Systems (ICSs) are used in several domains such as Transportation, Manufacturing, Defense and Power Generation and Distribution. ICSs deal with complex physical systems in order to achieve an industrial purpose with operational safety. Security has not been taken into account by design in these systems that makes them vulnerable to cyberattacks.In this paper, we rely on existing public ICS datasets as well as on the existing literature of Machine Learning (ML) applications for anomaly detection in ICSs in order to improve detection scores. To perform this purpose, we propose a systematic framework, relying on established ML algorithms and suitable data preprocessing methods, which allows us to quickly get efficient, and surprisingly, better results than the literature. Finally, some recommendations for future public ICS dataset generations end this paper, which would be fruitful for improving future attack detection models and then protect new ICSs designed in the next future.
2022-09-29
Rodrigues, André Filipe, Monteiro, Bruno Miguel, Pedrosa, Isabel.  2021.  Cybersecurity risks : A behavioural approach through the influence of media and information literacy. 2021 16th Iberian Conference on Information Systems and Technologies (CISTI). :1–6.
The growing use of digital media has been accompanied by an increase of the risks associated with the use of information systems, notably cybersecurity risks. In turn, the increasing use of information systems has an impact on users' media and information literacy. This research aims to address the relationship between media and information literacy, and the adoption of risky cybersecurity behaviours. This approach will be carried out through the definition of a conceptual framework supported by a literature review, and a quantitative research of the relationships mentioned earlier considering a sample composed by students of a Higher Education Institution.
Rohan, Rohani, Funilkul, Suree, Pal, Debajyoti, Chutimaskul, Wichian.  2021.  Understanding of Human Factors in Cybersecurity: A Systematic Literature Review. 2021 International Conference on Computational Performance Evaluation (ComPE). :133–140.
Cybersecurity is paramount for all public and private sectors for protecting their information systems, data, and digital assets from cyber-attacks; thus, relying on technology-based protections alone will not achieve this goal. This work examines the role of human factors in cybersecurity by looking at the top-tier conference on Human Factors in Cybersecurity over the past 6 years. A total of 24 articles were selected for the final analysis. Findings show that most of the authors used a quantitative method, where survey was the most used tool for collecting the data, and less attention has been paid to the theoretical research. Besides, three types of users were identified: university-level users, organizational-level users, and unspecified users. Culture is another less investigated aspect, and the samples were biased towards the western community. Moreover, 17 human factors are identified; human awareness, privacy perception, trust perception, behavior, and capability are the top five among them. Also, new insights and recommendations are presented.
Scott, Jasmine, Kyobe, Michael.  2021.  Trends in Cybersecurity Management Issues Related to Human Behaviour and Machine Learning. 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1–8.
The number of organisational cybersecurity threats continues to increase every year as technology advances. All too often, organisations assume that implementing systems security measures like firewalls and anti-virus software will eradicate cyber threats. However, even the most robust security systems are vulnerable to threats. As advanced as machine learning cybersecurity technology is becoming, it cannot be solely relied upon to solve cyber threats. There are other forces that contribute to these threats that are many-a-times out of an organisation's control i.e., human behaviour. This research article aims to create an understanding of the trends in key cybersecurity management issues that have developed in the past five years in relation to human behaviour and machine learning. The methodology adopted to guide the synthesis of this review was a systematic literature review. The guidelines for conducting the review are presented in the review approach. The key cybersecurity management issues highlighted by the research includes risky security behaviours demonstrated by employees, social engineering, the current limitations present in machine learning insider threat detection, machine learning enhanced cyber threats, and the underinvestment challenges faced in the cybersecurity domain.
2022-09-09
He, Ruhai, Wan, Chengpeng, Jiang, Xinchen.  2021.  Risk Management of Port Operations: a Systematic Literature Review and Future Directions. 2021 6th International Conference on Transportation Information and Safety (ICTIS). :44—51.
With the continuous development of world economy, the trade and connection between countries are getting closer, in which ports are playing an increasingly important role. However, due to the inherent complexity of port operational environment, ports are exposed to various types of hazards and more likely to encounter risks with high frequency and serious consequences. Therefore, proper and effective risk management of ports is particularly essential and necessary. In this research, literature from three aspects including risk assessment of port operations and service, safety management of dangerous goods, and port supply chain risk management was collected and investigated, in order to put forward the future research direction related to the risk management of port operations. The research results show that, firstly, most of the current research mainly focuses on the operational risk of traditional ports and a lot of relevant achievements have been seen. However, few scholars have studied the risk issues of smart ports which are believed to be the trend of future with the rapid development and application of high and new technologies. Thus, it is suggested that more attention should be shifted to the identification and assessment of operational risks of smart ports considering their characteristics. Secondly, although the risk evaluation systems of port operational safety have been established and widely studied, more efforts are still needed in terms of the suitability and effectiveness of the proposed indicators, especially when dangerous goods are involved. Thirdly, risk management of port supply chain is another popular topic, in which, one of the main difficulties lies on the collection of risk related statistics data due to the fact that port supply chain systems are usually huge and complex. It is inevitably that the evaluation results will lack objectivity to some extent. Therefore, it calls for more research on the risk assessment of port supply chains in a quantitative manner. In addition, resilience, as an emerging concept in the transportation field, will provide a new angle on the risk management of port supply chains.