Visible to the public Biblio

Found 101 results

Filters: Keyword is Systematics  [Clear All Filters]
2021-08-11
Chang, Rong N., Bhaskaran, Kumar, Dey, Prasenjit, Hsu, Hsianghan, Takeda, Seiji, Hama, Toshiyuki.  2020.  Realizing A Composable Enterprise Microservices Fabric with AI-Accelerated Material Discovery API Services. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :313–320.
The complexity of building, deploying, and managing cross-organizational enterprise computing services with self-service, security, and quality assurances has been increasing exponentially in the era of hybrid multiclouds. AI-accelerated material discovery capabilities, for example, are desirable for enterprise application users to consume through business API services with assurance of satisfactory nonfunctional properties, e.g., enterprise-compliant self-service management of sharable sensitive data and machine learning capabilities at Internet scale. This paper presents a composable microservices based approach to creating and continuously improving enterprise computing services. Moreover, it elaborates on several key architecture design decisions for Navarch, a composable enterprise microservices fabric that facilitates consuming, managing, and composing enterprise API services. Under service management model of individual administration, every Navarch microservice is a managed composable API service that can be provided by an internal organization, an enterprise partner, or a public service provider. This paper also illustrates a Navarch-enabled systematic and efficient approach to transforming an AI-accelerated material discovery tool into secure, scalable, and composable enterprise microservices. Performance of the microservices can be continuously improved by exploiting advanced heterogeneous microservice hosting infrastructures. Factual comparative performance analyses are provided before the paper concludes with future work.
Saeed, Imtithal A., Selamat, Ali, Rohani, Mohd Foad, Krejcar, Ondrej, Chaudhry, Junaid Ahsenali.  2020.  A Systematic State-of-the-Art Analysis of Multi-Agent Intrusion Detection. IEEE Access. 8:180184–180209.
Multi-agent architectures have been successful in attaining considerable attention among computer security researchers. This is so, because of their demonstrated capabilities such as autonomy, embedded intelligence, learning and self-growing knowledge-base, high scalability, fault tolerance, and automatic parallelism. These characteristics have made this technology a de facto standard for developing ambient security systems to meet the open and dynamic nature of today's online communities. Although multi-agent architectures are increasingly studied in the area of computer security, there is still not enough empirical evidence on their performance in intrusions and attacks detection. The aim of this paper is to report the systematic literature review conducted in the context of specific research questions, to investigate multi-agent IDS architectures to highlight the issues that affect their performance in terms of detection accuracy and response time. We used pertinent keywords and terms to search and retrieve the most recent research studies, on multi-agent IDS architectures, from the major research databases and digital libraries such as SCOPUS, Springer, and IEEE Explore. The search processes resulted in a number of studies; among them, there were journal articles, book chapters, conference papers, dissertations, and theses. The obtained studies were assessed and filtered out, and finally, there were over 71 studies chosen to answer the research questions. The results of this study have shown that multi-agent architectures include several advantages that can help in the development of ambient IDS. However, it has been found that there are several issues in the current multi-agent IDS architectures that may degrade the accuracy and response time of intrusions and attacks detection. Based on our findings, the issues of multi-agent IDS architectures include limitations in the techniques, mechanisms, and schemes used for multi-agent IDS adaptation and learning, load balancing, scalability, fault-tolerance, and high communication overhead. It has also been found that new measurement metrics are required for evaluating multi-agent IDS architectures.
2021-05-25
Laato, Samuli, Farooq, Ali, Tenhunen, Henri, Pitkamaki, Tinja, Hakkala, Antti, Airola, Antti.  2020.  AI in Cybersecurity Education- A Systematic Literature Review of Studies on Cybersecurity MOOCs. 2020 IEEE 20th International Conference on Advanced Learning Technologies (ICALT). :6—10.

Machine learning (ML) techniques are changing both the offensive and defensive aspects of cybersecurity. The implications are especially strong for privacy, as ML approaches provide unprecedented opportunities to make use of collected data. Thus, education on cybersecurity and AI is needed. To investigate how AI and cybersecurity should be taught together, we look at previous studies on cybersecurity MOOCs by conducting a systematic literature review. The initial search resulted in 72 items and after screening for only peer-reviewed publications on cybersecurity online courses, 15 studies remained. Three of the studies concerned multiple cybersecurity MOOCs whereas 12 focused on individual courses. The number of published work evaluating specific cybersecurity MOOCs was found to be small compared to all available cybersecurity MOOCs. Analysis of the studies revealed that cybersecurity education is, in almost all cases, organised based on the topic instead of used tools, making it difficult for learners to find focused information on AI applications in cybersecurity. Furthermore, there is a gab in academic literature on how AI applications in cybersecurity should be taught in online courses.

2021-05-13
Huo, Dongdong, Wang, Yu, Liu, Chao, Li, Mingxuan, Wang, Yazhe, Xu, Zhen.  2020.  LAPE: A Lightweight Attestation of Program Execution Scheme for Bare-Metal Systems. 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :78—86.

Unlike traditional processors, Internet of Things (IoT) devices are short of resources to incorporate mature protections (e.g. MMU, TrustZone) against modern control-flow attacks. Remote (control-flow) attestation is fast becoming a key instrument in securing such devices as it has proven the effectiveness on not only detecting runtime malware infestation of a remote device, but also saving the computing resources by moving the costly verification process away. However, few control-flow attestation schemes have been able to draw on any systematic research into the software specificity of bare-metal systems, which are widely deployed on resource-constrained IoT devices. To our knowledge, the unique design patterns of the system limit implementations of such expositions. In this paper, we present the design and proof-of-concept implementation of LAPE, a lightweight attestation of program execution scheme that enables detecting control-flow attacks for bare-metal systems without requiring hardware modification. With rudimentary memory protection support found in modern IoT-class microcontrollers, LAPE leverages software instrumentation to compartmentalize the firmware functions into several ”attestation compartments”. It then continuously tracks the control-flow events of each compartment and periodically reports them to the verifier. The PoC of the scheme is incorporated into an LLVM-based compiler to generate the LAPE-enabled firmware. By taking experiments with several real-world IoT firmware, the results show both the efficiency and practicality of LAPE.

Wu, Xiaohe, Calderon, Juan, Obeng, Morrison.  2021.  Attribution Based Approach for Adversarial Example Generation. SoutheastCon 2021. :1–6.
Neural networks with deep architectures have been used to construct state-of-the-art classifiers that can match human level accuracy in areas such as image classification. However, many of these classifiers can be fooled by examples slightly modified from their original forms. In this work, we propose a novel approach for generating adversarial examples that makes use of only attribution information of the features and perturbs only features that are highly influential to the output of the classifier. We call this approach Attribution Based Adversarial Generation (ABAG). To demonstrate the effectiveness of this approach, three somewhat arbitrary algorithms are proposed and examined. In the first algorithm all non-zero attributions are utilized and associated features perturbed; in the second algorithm only the top-n most positive and top-n most negative attributions are used and corresponding features perturbed; and in the third algorithm the level of perturbation is increased in an iterative manner until an adversarial example is discovered. All of the three algorithms are implemented and experiments are performed on the well-known MNIST dataset. Experiment results show that adversarial examples can be generated very efficiently, and thus prove the validity and efficacy of ABAG - utilizing attributions for the generation of adversarial examples. Furthermore, as shown by examples, ABAG can be adapted to provides a systematic searching approach to generate adversarial examples by perturbing a minimum amount of features.
2021-04-27
Matthews, I., Mace, J., Soudjani, S., Moorsel, A. van.  2020.  Cyclic Bayesian Attack Graphs: A Systematic Computational Approach. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :129–136.
Attack graphs are commonly used to analyse the security of medium-sized to large networks. Based on a scan of the network and likelihood information of vulnerabilities, attack graphs can be transformed into Bayesian Attack Graphs (BAGs). These BAGs are used to evaluate how security controls affect a network and how changes in topology affect security. A challenge with these automatically generated BAGs is that cycles arise naturally, which make it impossible to use Bayesian network theory to calculate state probabilities. In this paper we provide a systematic approach to analyse and perform computations over cyclic Bayesian attack graphs. We present an interpretation of Bayesian attack graphs based on combinational logic circuits, which facilitates an intuitively attractive systematic treatment of cycles. We prove properties of the associated logic circuit and present an algorithm that computes state probabilities without altering the attack graphs (e.g., remove an arc to remove a cycle). Moreover, our algorithm deals seamlessly with any cycle without the need to identify their type. A set of experiments demonstrates the scalability of the algorithm on computer networks with hundreds of machines, each with multiple vulnerabilities.
2021-03-09
Muñoz, C. M. Blanco, Cruz, F. Gómez, Valero, J. S. Jimenez.  2020.  Software architecture for the application of facial recognition techniques through IoT devices. 2020 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI). :1–5.

The facial recognition time by time takes more importance, due to the extend kind of applications it has, but it is still challenging when faces big variations in the characteristics of the biometric data used in the process and especially referring to the transportation of information through the internet in the internet of things context. Based on the systematic review and rigorous study that supports the extraction of the most relevant information on this topic [1], a software architecture proposal which contains basic security requirements necessary for the treatment of the data involved in the application of facial recognition techniques, oriented to an IoT environment was generated. Concluding that the security and privacy considerations of the information registered in IoT devices represent a challenge and it is a priority to be able to guarantee that the data circulating on the network are only accessible to the user that was designed for this.

2021-02-10
Romano, A., Zheng, Y., Wang, W..  2020.  MinerRay: Semantics-Aware Analysis for Ever-Evolving Cryptojacking Detection. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1129—1140.
Recent advances in web technology have made in-browser crypto-mining a viable funding model. However, these services have been abused to launch large-scale cryptojacking attacks to secretly mine cryptocurrency in browsers. To detect them, various signature-based or runtime feature-based methods have been proposed. However, they can be imprecise or easily circumvented. To this end, we propose MinerRay, a generic scheme to detect malicious in-browser cryptominers. Instead of leveraging unreliable external patterns, MinerRay infers the essence of cryptomining behaviors that differentiate mining from common browser activities in both WebAssembly and JavaScript contexts. Additionally, to detect stealthy mining activities without user consents, MinerRay checks if the miner can only be instantiated from user actions. MinerRay was evaluated on over 1 million websites. It detected cryptominers on 901 websites, where 885 secretly start mining without user consent. Besides, we compared MinerRay with five state-of-the-art signature-based or behavior-based cryptominer detectors (MineSweeper, CMTracker, Outguard, No Coin, and minerBlock). We observed that emerging miners with new signatures or new services were detected by MinerRay but missed by others. The results show that our proposed technique is effective and robust in detecting evolving cryptominers, yielding more true positives, and fewer errors.
2021-01-28
Fan, M., Yu, L., Chen, S., Zhou, H., Luo, X., Li, S., Liu, Y., Liu, J., Liu, T..  2020.  An Empirical Evaluation of GDPR Compliance Violations in Android mHealth Apps. 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE). :253—264.

The purpose of the General Data Protection Regulation (GDPR) is to provide improved privacy protection. If an app controls personal data from users, it needs to be compliant with GDPR. However, GDPR lists general rules rather than exact step-by-step guidelines about how to develop an app that fulfills the requirements. Therefore, there may exist GDPR compliance violations in existing apps, which would pose severe privacy threats to app users. In this paper, we take mobile health applications (mHealth apps) as a peephole to examine the status quo of GDPR compliance in Android apps. We first propose an automated system, named HPDROID, to bridge the semantic gap between the general rules of GDPR and the app implementations by identifying the data practices declared in the app privacy policy and the data relevant behaviors in the app code. Then, based on HPDROID, we detect three kinds of GDPR compliance violations, including the incompleteness of privacy policy, the inconsistency of data collections, and the insecurity of data transmission. We perform an empirical evaluation of 796 mHealth apps. The results reveal that 189 (23.7%) of them do not provide complete privacy policies. Moreover, 59 apps collect sensitive data through different measures, but 46 (77.9%) of them contain at least one inconsistent collection behavior. Even worse, among the 59 apps, only 8 apps try to ensure the transmission security of collected data. However, all of them contain at least one encryption or SSL misuse. Our work exposes severe privacy issues to raise awareness of privacy protection for app users and developers.

2020-11-09
Ya'u, B. I., Nordin, A., Salleh, N., Aliyu, I..  2018.  Requirements Patterns Structure for Specifying and Reusing Software Product Line Requirements. 2018 International Conference on Information and Communication Technology for the Muslim World (ICT4M). :185–190.
A well-defined structure is essential in all software development, thus providing an avenue for smooth execution of the processes involved during various software development phases. One of the potential benefits provided by a well-defined structure is systematic reuse of software artifacts. Requirements pattern approach provides guidelines and modality that enables a systematic way of specifying and documenting requirements, which in turn supports a systematic reuse. Although there is a great deal of research concerning requirements pattern in the literature, the research focuses are not on requirement engineering (RE) activities of SPLE. In this paper, we proposed a software requirement pattern (SRP) structure based on RePa Requirements Pattern Template, which was adapted to best suit RE activities in SPLE. With this requirement pattern structure, RE activities such as elicitation and identification of common and variable requirements as well as the specification, documentation, and reuse in SPLE could be substantially improved.
2020-11-04
Thomas, L. J., Balders, M., Countney, Z., Zhong, C., Yao, J., Xu, C..  2019.  Cybersecurity Education: From Beginners to Advanced Players in Cybersecurity Competitions. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :149—151.

Cybersecurity competitions have been shown to be an effective approach for promoting student engagement through active learning in cybersecurity. Players can gain hands-on experience in puzzle-based or capture-the-flag type tasks that promote learning. However, novice players with limited prior knowledge in cybersecurity usually found difficult to have a clue to solve a problem and get frustrated at the early stage. To enhance student engagement, it is important to study the experiences of novices to better understand their learning needs. To achieve this goal, we conducted a 4-month longitudinal case study which involves 11 undergraduate students participating in a college-level cybersecurity competition, National Cyber League (NCL) competition. The competition includes two individual games and one team game. Questionnaires and in-person interviews were conducted before and after each game to collect the players' feedback on their experience, learning challenges and needs, and information about their motivation, interests and confidence level. The collected data demonstrate that the primary concern going into these competitions stemmed from a lack of knowledge regarding cybersecurity concepts and tools. Players' interests and confidence can be increased by going through systematic training.

2020-11-02
Kralevska, Katina, Gligoroski, Danilo, Jensen, Rune E., Øverby, Harald.  2018.  HashTag Erasure Codes: From Theory to Practice. IEEE Transactions on Big Data. 4:516—529.
Minimum-Storage Regenerating (MSR) codes have emerged as a viable alternative to Reed-Solomon (RS) codes as they minimize the repair bandwidth while they are still optimal in terms of reliability and storage overhead. Although several MSR constructions exist, so far they have not been practically implemented mainly due to the big number of I/O operations. In this paper, we analyze high-rate MDS codes that are simultaneously optimized in terms of storage, reliability, I/O operations, and repair-bandwidth for single and multiple failures of the systematic nodes. The codes were recently introduced in [1] without any specific name. Due to the resemblance between the hashtag sign \# and the procedure of the code construction, we call them in this paper HashTag Erasure Codes (HTECs). HTECs provide the lowest data-read and data-transfer, and thus the lowest repair time for an arbitrary sub-packetization level α, where α ≤ r⌈k/r⌉, among all existing MDS codes for distributed storage including MSR codes. The repair process is linear and highly parallel. Additionally, we show that HTECs are the first high-rate MDS codes that reduce the repair bandwidth for more than one failure. Practical implementations of HTECs in Hadoop release 3.0.0-alpha2 demonstrate their great potentials.
2020-10-12
D'Angelo, Mirko, Gerasimou, Simos, Ghahremani, Sona, Grohmann, Johannes, Nunes, Ingrid, Pournaras, Evangelos, Tomforde, Sven.  2019.  On Learning in Collective Self-Adaptive Systems: State of Practice and a 3D Framework. 2019 IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). :13–24.
Collective self-adaptive systems (CSAS) are distributed and interconnected systems composed of multiple agents that can perform complex tasks such as environmental data collection, search and rescue operations, and discovery of natural resources. By providing individual agents with learning capabilities, CSAS can cope with challenges related to distributed sensing and decision-making and operate in uncertain environments. This unique characteristic of CSAS enables the collective to exhibit robust behaviour while achieving system-wide and agent-specific goals. Although learning has been explored in many CSAS applications, selecting suitable learning models and techniques remains a significant challenge that is heavily influenced by expert knowledge. We address this gap by performing a multifaceted analysis of existing CSAS with learning capabilities reported in the literature. Based on this analysis, we introduce a 3D framework that illustrates the learning aspects of CSAS considering the dimensions of autonomy, knowledge access, and behaviour, and facilitates the selection of learning techniques and models. Finally, using example applications from this analysis, we derive open challenges and highlight the need for research on collaborative, resilient and privacy-aware mechanisms for CSAS.
2020-08-24
Quinn, Ren, Holguin, Nico, Poster, Ben, Roach, Corey, Merwe, Jacobus Kobus Van der.  2019.  WASPP: Workflow Automation for Security Policy Procedures. 2019 15th International Conference on Network and Service Management (CNSM). :1–5.

Every day, university networks are bombarded with attempts to steal the sensitive data of the various disparate domains and organizations they serve. For this reason, universities form teams of information security specialists called a Security Operations Center (SOC) to manage the complex operations involved in monitoring and mitigating such attacks. When a suspicious event is identified, members of the SOC are tasked to understand the nature of the event in order to respond to any damage the attack might have caused. This process is defined by administrative policies which are often very high-level and rarely systematically defined. This impedes the implementation of generalized and automated event response solutions, leading to specific ad hoc solutions based primarily on human intuition and experience as well as immediate administrative priorities. These solutions are often fragile, highly specific, and more difficult to reuse in other scenarios.

2020-08-17
De Oliveira Nunes, Ivan, Dessouky, Ghada, Ibrahim, Ahmad, Rattanavipanon, Norrathep, Sadeghi, Ahmad-Reza, Tsudik, Gene.  2019.  Towards Systematic Design of Collective Remote Attestation Protocols. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1188–1198.
Networks of and embedded (IoT) devices are becoming increasingly popular, particularly, in settings such as smart homes, factories and vehicles. These networks can include numerous (potentially diverse) devices that collectively perform certain tasks. In order to guarantee overall safety and privacy, especially in the face of remote exploits, software integrity of each device must be continuously assured. This can be achieved by Remote Attestation (RA) - a security service for reporting current software state of a remote and untrusted device. While RA of a single device is well understood, collective RA of large numbers of networked embedded devices poses new research challenges. In particular, unlike single-device RA, collective RA has not benefited from any systematic treatment. Thus, unsurprisingly, prior collective RA schemes are designed in an ad hoc fashion. Our work takes the first step toward systematic design of collective RA, in order to help place collective RA onto a solid ground and serve as a set of design guidelines for both researchers and practitioners. We explore the design space for collective RA and show how the notions of security and effectiveness can be formally defined according to a given application domain. We then present and evaluate a concrete collective RA scheme systematically designed to satisfy these goals.
2020-05-22
Sheth, Utsav, Dutta, Sanghamitra, Chaudhari, Malhar, Jeong, Haewon, Yang, Yaoqing, Kohonen, Jukka, Roos, Teemu, Grover, Pulkit.  2018.  An Application of Storage-Optimal MatDot Codes for Coded Matrix Multiplication: Fast k-Nearest Neighbors Estimation. 2018 IEEE International Conference on Big Data (Big Data). :1113—1120.
We propose a novel application of coded computing to the problem of the nearest neighbor estimation using MatDot Codes (Fahim et al., Allerton'17) that are known to be optimal for matrix multiplication in terms of recovery threshold under storage constraints. In approximate nearest neighbor algorithms, it is common to construct efficient in-memory indexes to improve query response time. One such strategy is Multiple Random Projection Trees (MRPT), which reduces the set of candidate points over which Euclidean distance calculations are performed. However, this may result in a high memory footprint and possibly paging penalties for large or high-dimensional data. Here we propose two techniques to parallelize MRPT that exploit data and model parallelism respectively by dividing both the data storage and the computation efforts among different nodes in a distributed computing cluster. This is especially critical when a single compute node cannot hold the complete dataset in memory. We also propose a novel coded computation strategy based on MatDot codes for the model-parallel architecture that, in a straggler-prone environment, achieves the storage-optimal recovery threshold, i.e., the number of nodes that are required to serve a query. We experimentally demonstrate that, in the absence of straggling, our distributed approaches require less query time than execution on a single processing node, providing near-linear speedups with respect to the number of worker nodes. Our experiments on real systems with simulated straggling, we also show that in a straggler-prone environment, our strategy achieves a faster query execution than the uncoded strategy.
2020-04-06
Frank, Anna, Aydinian, Harout, Boche, Holger.  2019.  Delay Optimal Coding for Secure Transmission over a Burst Erasure Wiretap Channel. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1—7.

We consider transmissions of secure messages over a burst erasure wiretap channel under decoding delay constraint. For block codes we introduce and study delay optimal secure burst erasure correcting (DO-SBE) codes that provide perfect security and recover a burst of erasures of a limited length with minimum possible delay. Our explicit constructions of DO-SBE block codes achieve maximum secrecy rate. We also consider a model of a burst erasure wiretap channel for the streaming setup, where in any sliding window of a given size, in a stream of encoded source packets, the eavesdropper is able to observe packets in an interval of a given size. For that model we obtain an information theoretic upper bound on the secrecy rate for delay optimal streaming codes. We show that our block codes can be used for construction of delay optimal burst erasure correcting streaming codes which provide perfect security and meet the upper bound for a certain class of code parameters.

2020-01-20
Osken, Sinem, Yildirim, Ecem Nur, Karatas, Gozde, Cuhaci, Levent.  2019.  Intrusion Detection Systems with Deep Learning: A Systematic Mapping Study. 2019 Scientific Meeting on Electrical-Electronics Biomedical Engineering and Computer Science (EBBT). :1–4.

In this study, a systematic mapping study was conducted to systematically evaluate publications on Intrusion Detection Systems with Deep Learning. 6088 papers have been examined by using systematic mapping method to evaluate the publications related to this paper, which have been used increasingly in the Intrusion Detection Systems. The goal of our study is to determine which deep learning algorithms were used mostly in the algortihms, which criteria were taken into account for selecting the preferred deep learning algorithm, and the most searched topics of intrusion detection with deep learning algorithm model. Scientific studies published in the last 10 years have been studied in the IEEE Explorer, ACM Digital Library, Science Direct, Scopus and Wiley databases.

2019-07-01
Rosa, F. De Franco, Jino, M., Bueno, P. Marcos Siqueira, Bonacin, R..  2018.  Coverage-Based Heuristics for Selecting Assessment Items from Security Standards: A Core Set Proposal. 2018 Workshop on Metrology for Industry 4.0 and IoT. :192-197.

In the realm of Internet of Things (IoT), information security is a critical issue. Security standards, including their assessment items, are essential instruments in the evaluation of systems security. However, a key question remains open: ``Which test cases are most effective for security assessment?'' To create security assessment designs with suitable assessment items, we need to know the security properties and assessment dimensions covered by a standard. We propose an approach for selecting and analyzing security assessment items; its foundations come from a set of assessment heuristics and it aims to increase the coverage of assessment dimensions and security characteristics in assessment designs. The main contribution of this paper is the definition of a core set of security assessment heuristics. We systematize the security assessment process by means of a conceptual formalization of the security assessment area. Our approach can be applied to security standards to select or to prioritize assessment items with respect to 11 security properties and 6 assessment dimensions. The approach is flexible allowing the inclusion of dimensions and properties. Our proposal was applied to a well know security standard (ISO/IEC 27001) and its assessment items were analyzed. The proposal is meant to support: (i) the generation of high-coverage assessment designs, which include security assessment items with assured coverage of the main security characteristics, and (ii) evaluation of security standards with respect to the coverage of security aspects.

2018-09-05
Pasareanu, C..  2017.  Symbolic execution and probabilistic reasoning. 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). :1–1.
Summary form only given. Symbolic execution is a systematic program analysis technique which explores multiple program behaviors all at once by collecting and solving symbolic path conditions over program paths. The technique has been recently extended with probabilistic reasoning. This approach computes the conditions to reach target program events of interest and uses model counting to quantify the fraction of the input domain satisfying these conditions thus computing the probability of event occurrence. This probabilistic information can be used for example to compute the reliability of an aircraft controller under different wind conditions (modeled probabilistically) or to quantify the leakage of sensitive data in a software system, using information theory metrics such as Shannon entropy. In this talk we review recent advances in symbolic execution and probabilistic reasoning and we discuss how they can be used to ensure the safety and security of software systems.
2018-04-11
Hossain, F. S., Yoneda, T., Shintani, M., Inoue, M., Orailoglo, A..  2017.  Intra-Die-Variation-Aware Side Channel Analysis for Hardware Trojan Detection. 2017 IEEE 26th Asian Test Symposium (ATS). :52–57.

High detection sensitivity in the presence of process variation is a key challenge for hardware Trojan detection through side channel analysis. In this work, we present an efficient Trojan detection approach in the presence of elevated process variations. The detection sensitivity is sharpened by 1) comparing power levels from neighboring regions within the same chip so that the two measured values exhibit a common trend in terms of process variation, and 2) generating test patterns that toggle each cell multiple times to increase Trojan activation probability. Detection sensitivity is analyzed and its effectiveness demonstrated by means of RPD (relative power difference). We evaluate our approach on ISCAS'89 and ITC'99 benchmarks and the AES-128 circuit for both combinational and sequential type Trojans. High detection sensitivity is demonstrated by analysis on RPD under a variety of process variation levels and experiments for Trojan inserted circuits.

2018-02-02
Huang, W., Bruck, J..  2016.  Secure RAID schemes for distributed storage. 2016 IEEE International Symposium on Information Theory (ISIT). :1401–1405.

We propose secure RAID, i.e., low-complexity schemes to store information in a distributed manner that is resilient to node failures and resistant to node eavesdropping. We generalize the concept of systematic encoding to secure RAID and show that systematic schemes have significant advantages in the efficiencies of encoding, decoding and random access. For the practical high rate regime, we construct three XOR-based systematic secure RAID schemes with optimal encoding and decoding complexities, from the EVENODD codes and B codes, which are array codes widely used in the RAID architecture. These schemes optimally tolerate two node failures and two eavesdropping nodes. For more general parameters, we construct efficient systematic secure RAID schemes from Reed-Solomon codes. Our results suggest that building “keyless”, information-theoretic security into the RAID architecture is practical.

2015-05-06
Hardy, T.L..  2014.  Resilience: A holistic safety approach. Reliability and Maintainability Symposium (RAMS), 2014 Annual. :1-6.

Decreasing the potential for catastrophic consequences poses a significant challenge for high-risk industries. Organizations are under many different pressures, and they are continuously trying to adapt to changing conditions and recover from disturbances and stresses that can arise from both normal operations and unexpected events. Reducing risks in complex systems therefore requires that organizations develop and enhance traits that increase resilience. Resilience provides a holistic approach to safety, emphasizing the creation of organizations and systems that are proactive, interactive, reactive, and adaptive. This approach relies on disciplines such as system safety and emergency management, but also requires that organizations develop indicators and ways of knowing when an emergency is imminent. A resilient organization must be adaptive, using hands-on activities and lessons learned efforts to better prepare it to respond to future disruptions. It is evident from the discussions of each of the traits of resilience, including their limitations, that there are no easy answers to reducing safety risks in complex systems. However, efforts to strengthen resilience may help organizations better address the challenges associated with the ever-increasing complexities of their systems.

Hoos, E..  2014.  Design method for developing a Mobile Engineering-Application Middleware (MEAM). Pervasive Computing and Communications Workshops (PERCOM Workshops), 2014 IEEE International Conference on. :176-177.

Mobile Apps running on smartphones and tablet pes offer a new possibility to enhance the work of engineers because they provide an easy-to-use, touchscreen-based handling and can be used anytime and anywhere. Introducing mobile apps in the engineering domain is difficult because the IT environment is heterogeneous and engineering-specific challenges in the app development arise e. g., large amount of data and high security requirements. There is a need for an engineering-specific middleware to facilitate and standardize the app development. However, such a middleware does not yet exist as well as a holistic set of requirements for the development. Therefore, we propose a design method which offers a systematic procedure to develop Mobile Engineering-Application Middleware.

2015-05-01
Hummel, M..  2014.  State-of-the-Art: A Systematic Literature Review on Agile Information Systems Development. System Sciences (HICSS), 2014 47th Hawaii International Conference on. :4712-4721.

Principles of agile information systems development (ISD) have attracted the interest of practice as well as research. The goal of this literature review is to validate, update and extend previous reviews in terms of the general state of research on agile ISD. Besides including categories such as the employed research methods and data collection techniques, the importance of theory is highlighted by evaluating the theoretical foundations and contributions of former studies. Since agile ISD is rooted in the IS as well as software engineering discipline, important outlets of both disciplines are included in the search process, resulting in 482 investigated papers. The findings show that quantitative studies and the theoretical underpinnings of agile ISD are lacking. Extreme Programming is still the most researched agile ISD method, and more efforts on Scrum are needed. In consequence, multiple research gaps that need further research attention are identified.