Biblio
Github Gist is a service provided by Github which is used by developers to share code snippets. While sharing, developers may inadvertently introduce security smells in code snippets as well, such as hard-coded passwords. Security smells are recurrent coding patterns that are indicative of security weaknesses, which could potentially lead to security breaches. The goal of this paper is to help software practitioners avoid insecure coding practices through an empirical study of security smells in publicly-available GitHub Gists. Through static analysis, we found 13 types of security smells with 4,403 occurrences in 5,822 publicly-available Python Gists. 1,817 of those Gists, which is around 31%, have at least one security smell including 689 instances of hard-coded secrets. We also found no significance relation between the presence of these security smells and the reputation of the Gist author. Based on our findings, we advocate for increased awareness and rigorous code review efforts related to software security for Github Gists so that propagation of insecure coding practices are mitigated.
The rapid rise of cyber-crime activities and the growing number of devices threatened by them place software security issues in the spotlight. As around 90% of all attacks exploit known types of security issues, finding vulnerable components and applying existing mitigation techniques is a viable practical approach for fighting against cyber-crime. In this paper, we investigate how the state-of-the-art machine learning techniques, including a popular deep learning algorithm, perform in predicting functions with possible security vulnerabilities in JavaScript programs. We applied 8 machine learning algorithms to build prediction models using a new dataset constructed for this research from the vulnerability information in public databases of the Node Security Project and the Snyk platform, and code fixing patches from GitHub. We used static source code metrics as predictors and an extensive grid-search algorithm to find the best performing models. We also examined the effect of various re-sampling strategies to handle the imbalanced nature of the dataset. The best performing algorithm was KNN, which created a model for the prediction of vulnerable functions with an F-measure of 0.76 (0.91 precision and 0.66 recall). Moreover, deep learning, tree and forest based classifiers, and SVM were competitive with F-measures over 0.70. Although the F-measures did not vary significantly with the re-sampling strategies, the distribution of precision and recall did change. No re-sampling seemed to produce models preferring high precision, while re-sampling strategies balanced the IR measures.