Biblio
With the rapid development of Internet of Things technology and sensor networks, large amount of data is facing security challenges in the transmission process. In the process of data transmission, the standardization and authentication of data sources are very important. A digital signature scheme based on bilinear pairing problem is designed. In this scheme, by signing the authorization mechanism, the management node can control the signature process and distribute data. The use of private key segmentation mechanism can reduce the performance requirements of sensor nodes. The reasonable combination of timestamp mechanism can ensure the time limit of signature and be verified after the data is sent. It is hoped that the implementation of this scheme can improve the security of data transmission on the Internet of things environment.
Companies like Netflix increasingly use the cloud to deploy their business processes. Those processes often involve partnerships with other companies, and can be modeled as workflows where the owner of the data at risk interacts with contractors to realize a sequence of tasks on the data to be secured.In practice, access control is an essential building block to deploy these secured workflows. This component is generally managed by administrators using high-level policies meant to represent the requirements and restrictions put on the workflow. Handling access control with a high-level scheme comes with the benefit of separating the problem of specification, i.e. defining the desired behavior of the system, from the problem of implementation, i.e. enforcing this desired behavior. However, translating such high-level policies into a deployed implementation can be error-prone.Even though semi-automatic and automatic tools have been proposed to assist this translation, policy verification remains highly challenging in practice. In this paper, our aim is to define and propose structures assisting the checking and correction of potential errors introduced on the ground due to a faulty translation or corrupted deployments. In particular, we investigate structures with formal foundations able to naturally model policies. Metagraphs, a generalized graph theoretic structure, fulfill those requirements: their usage enables to compare high-level policies to their implementation. In practice, we consider Rego, a language used by companies like Netflix and Plex for their release process, as a valuable representative of most common policy languages. We propose a suite of tools transforming and checking policies as metagraphs, and use them in a global framework to show how policy verification can be achieved with such structures. Finally, we evaluate the performance of our verification method.
Commodity I/O hardware often fails to separate I/O transfers of isolated OS and applications code. Even when using the best I/O hardware, commodity systems sometimes trade off separation assurance for increased performance. Remarkably, device firmware need not be malicious. Instead, any malicious driver, even if isolated in its own execution domain, can manipulate its device to breach I/O separation. To prevent such vulnerabilities with high assurance, a formal I/O separation model and its use in automatic generation of secure I/O kernel code is necessary.This paper presents a formal I/O separation model, which defines a separation policy based on authorization of I/O transfers and is hardware agnostic. The model, its refinement, and instantiation in the Wimpy kernel design, are formally specified and verified in Dafny. We then specify the kernel implementation and automatically generate verified-correct assembly code that enforces the I/O separation policies. Our formal modeling enables the discovery of heretofore unknown design and implementation vulnerabilities of the original Wimpy kernel. Finally, we outline how the model can be applied to other I/O kernels and conclude with the key lessons learned.