Biblio
The last decade has witnessed a growing interest in exploiting the advantages of Cloud Computing technology. However, the full migration of services and data to the Cloud is still cautious due to the lack of security assurance. Cloud Service Providers (CSPs)are urged to exert the necessary efforts to boost their reputation and improve their trustworthiness. Nevertheless, the uniform implementation of advanced security solutions across all their data centers is not the ideal solution, since customers' security requirements are usually not monolithic. In this paper, we aim at integrating the Cloud security risk into the process of resource provisioning to increase the security of Cloud data centers. First, we propose a quantitative security risk evaluation approach based on the definition of distinct security metrics and configurations adapted to the Cloud Computing environment. Then, the evaluated security risk levels are incorporated into a resource provisioning model in an InterCloud setting. Finally, we adopt two different metaheuristics approaches from the family of evolutionary computation to solve the security risk-aware resource provisioning problem. Simulations show that our model reduces the security risk within the Cloud infrastructure and demonstrate the efficiency and scalability of proposed solutions.
Fog computing extends cloud computing technology to the edge of the infrastructure to support dynamic computation for IoT applications. Reduced latency and location awareness in objects' data access is attained by displacing workloads from the central cloud to edge devices. Doing so, it reduces raw data transfers from target objects to the central cloud, thus overcoming communication bottlenecks. This is a key step towards the pervasive uptake of next generation IoT-based services. In this work we study efficient orchestration of applications in fog computing, where a fog application is the cascade of a cloud module and a fog module. The problem results into a mixed integer non linear optimisation. It involves multiple constraints due to computation and communication demands of fog applications, available infrastructure resources and it accounts also the location of target IoT objects. We show that it is possible to reduce the complexity of the original problem with a related placement formulation, which is further solved using a greedy algorithm. This algorithm is the core placement logic of FogAtlas, a fog computing platform based on existing virtualization technologies. Extensive numerical results validate the model and the scalability of the proposed algorithm, showing performance close to the optimal solution with respect to the number of served applications.
Cloud computing denotes an IT infrastructure where data and software are stored and processed remotely in a data center of a cloud provider, which are accessible via an Internet service. This new paradigm is increasingly reaching the ears of companies and has revolutionized the marketplace of today owing to several factors, in particular its cost-effective architectures covering transmission, storage and intensive data computing. However, like any new technology, the cloud computing technology brings new problems of security, which represents the main restrain on turning to this paradigm. For this reason, users are reluctant to resort to the cloud because of security and protection of private data as well as lack of trust in cloud service providers. The work in this paper allows the readers to familiarize themselves with the field of security in the cloud computing paradigm while suggesting our contribution in this context. The security schema we propose allowing a distant user to ensure a completely secure migration of all their data anywhere in the cloud through DNA cryptography. Carried out experiments showed that our security solution outperforms its competitors in terms of integrity and confidentiality of data.
Industry 4.0 is based on the CPS architecture since it is the next generation in the industry. The CPS architecture is a system based on Cloud Computing technology and Internet of Things where computer elements collaborate for the control of physical entities. The security framework in this architecture is necessary for the protection of two parts (physical and information) so basically, security in CPS is classified into two main parts: information security (data) and security of control. In this work, we propose two models to solve the two problems detected in the security framework. The first proposal SCCAF (Smart Cloud Computing Adoption Framework) treats the nature of information that serves for the detection and the blocking of the threats our basic architecture CPS. The second model is a modeled detector related to the physical nature for detecting node information.
Now a day's cloud technology is a new example of computing that pays attention to more computer user, government agencies and business. Cloud technology brought more advantages particularly in every-present services where everyone can have a right to access cloud computing services by internet. With use of cloud computing, there is no requirement for physical servers or hardware that will help the computer system of company, networks and internet services. One of center services offered by cloud technology is storing the data in remote storage space. In the last few years, storage of data has been realized as important problems in information technology. In cloud computing data storage technology, there are some set of significant policy issues that includes privacy issues, anonymity, security, government surveillance, telecommunication capacity, liability, reliability and among others. Although cloud technology provides a lot of benefits, security is the significant issues between customer and cloud. Normally cloud computing technology has more customers like as academia, enterprises, and normal users who have various incentives to go to cloud. If the clients of cloud are academia, security result on computing performance and for this types of clients cloud provider's needs to discover a method to combine performance and security. In this research paper the more significant issue is security but with diverse vision. High performance might be not as dangerous for them as academia. In our paper, we design an efficient secure and verifiable outsourcing protocol for outsourcing data. We develop extended QP problem protocol for storing and outsourcing a data securely. To achieve the data security correctness, we validate the result returned through the cloud by Karush\_Kuhn\_Tucker conditions that are sufficient and necessary for the most favorable solution.
Recent architectures for the advanced metering infrastructure (AMI) have incorporated several back-end systems that handle billing and other smart grid control operations. The non-availability of metering data when needed or the untimely delivery of data needed for control operations will undermine the activities of these back-end systems. Unfortunately, there are concerns that cyber attacks such as distributed denial of service (DDoS) will manifest in magnitude and complexity in a smart grid AMI network. Such attacks will range from a delay in the availability of end user's metering data to complete denial in the case of a grounded network. This paper proposes a cloud-based (IaaS) firewall for the mitigation of DDoS attacks in a smart grid AMI network. The proposed firewall has the ability of not only mitigating the effects of DDoS attack but can prevent the attack before they are launched. Our proposed firewall system leverages on cloud computing technology which has an added advantage of reducing the burden of data computations and storage for smart grid AMI back-end systems. The openflow firewall proposed in this study is a better security solution with regards to the traditional on-premises DoS solutions which cannot cope with the wide range of new attacks targeting the smart grid AMI network infrastructure. Simulation results generated from the study show that our model can guarantee the availability of metering/control data and could be used to improve the QoS of the smart grid AMI network under a DDoS attack scenario.
Power network is important part of national comprehensive energy resources transmission system in the way of energy security promise and the economy society running. Meanwhile, because of many industries involved, the development of grid can push national innovation ability. Nowadays, it makes the inner of smart grid flourish that material science, computer technique and information and communication technology go forward. This paper researches the function and modality of smart grid on energy, geography and technology dimensions. The analysis on the technology dimension is addressed on two aspects which are network control and interaction with customer. The mapping relationship between functions fo smart grid and eight key technologies, which are Large-capacity flexible transmission technology, DC power distribution technology, Distributed power generation technology, Large-scale energy storage technology, Real-time tracking simulation technology, Intelligent electricity application technology, The big data analysis and cloud computing technology, Wide-area situational awareness technology, is given. The research emphasis of the key technologies is proposed.
It has gradually realized in the industry that the increasing complexity of cloud computing under interaction of technology, business, society and the like, instead of being simply solved depending on research on information technology, shall be explained and researched from a systematic and scientific perspective on the basis of theory and method of a complex adaptive system (CAS). This article, for basic problems in CAS theoretical framework, makes research on definition of an active adaptive agent constituting the cloud computing system, and proposes a service agent concept and basic model through commonality abstraction from two basic levels: cloud computing technology and business, thus laying a foundation for further development of cloud computing complexity research as well as for multi-agent based cloud computing environment simulation.
In this paper we explore the potential for securing a distributed Arabic Optical Character Recognition (OCR) system via cloud computing technology in a pervasive and mobile environment. The goal of the system is to achieve full accuracy, high speed and security when taking into account large vocabularies and amounts of documents. This issue has been resolved by integrating the recognition process and the security issue with multiprocessing and distributed computing technologies.