Biblio
Reliable and secure grid operations become more and more challenging in context of increasing IT/OT convergence and decreasing dynamic margins in today's power systems. To ensure the correct operation of monitoring and control functions in control centres, an intelligent assessment of the different information sources is necessary to provide a robust data source in case of critical physical events as well as cyber-attacks. Within this paper, a holistic data stream assessment methodology is proposed using an expert knowledge based cyber-physical situational awareness for different steady and transient system states. This approach goes beyond existing techniques by combining high-resolution PMU data with SCADA information as well as Digital Twin and AI based anomaly detection functionalities.
This paper presents a methodology for utilizing Phasor Measurement units (PMUs) for procuring real time synchronized measurements for assessing the security of the power system dynamically. The concept of wide-area dynamic security assessment considers transient instability in the proposed methodology. Intelligent framework based approach for online dynamic security assessment has been suggested wherein the database consisting of critical features associated with the system is generated for a wide range of contingencies, which is utilized to build the data mining model. This data mining model along with the synchronized phasor measurements is expected to assist the system operator in assessing the security of the system pertaining to a particular contingency, thereby also creating possibility of incorporating control and preventive measures in order to avoid any unforeseen instability in the system. The proposed technique has been implemented on IEEE 39 bus system for accurately indicating the security of the system and is found to be quite robust in the case of noise in the measurement data obtained from the PMUs.
The large amounts of synchrophasor data obtained by Phasor Measurement Units (PMUs) provide dynamic visibility into power systems. Extracting reliable information from the data can enhance power system situational awareness. The data quality often suffers from data losses, bad data, and cyber data attacks. Data privacy is also an increasing concern. In this paper, we discuss our recently proposed framework of data recovery, error correction, data privacy enhancement, and event identification methods by exploiting the intrinsic low-dimensional structures in the high-dimensional spatial-temporal blocks of PMU data. Our data-driven approaches are computationally efficient with provable analytical guarantees. The data recovery method can recover the ground-truth data even if simultaneous and consecutive data losses and errors happen across all PMU channels for some time. We can identify PMU channels that are under false data injection attacks by locating abnormal dynamics in the data. The data recovery method for the operator can extract the information accurately by collectively processing the privacy-preserving data from many PMUs. A cyber intruder with access to partial measurements cannot recover the data correctly even using the same approach. A real-time event identification method is also proposed, based on the new idea of characterizing an event by the low-dimensional subspace spanned by the dominant singular vectors of the data matrix.
Smart Grid cybersecurity is one of the key ingredients for successful and wide scale adaptation of the Smart Grid by utilities and governments around the world. The implementation of the Smart Grid relies mainly on the highly distributed sensing and communication functionalities of its components such as Wireless Sensor Networks (WSNs), Phasor Measurement Units (PMUs) and other protection devices. This distributed nature and the high number of connected devices are the main challenges for implementing cybersecurity in the smart grid. As an example, the North American Electric Reliability Corporation (NERC) issued the Critical Infrastructure Protection (CIP) standards (CIP-002 through CIP-009) to define cybersecurity requirements for critical power grid infrastructure. However, NERC CIP standards do not specify cybersecurity for different communication technologies such as WSNs, fiber networks and other network types. Implementing security mechanisms in WSNs is a challenging task due to the limited resources of the sensor devices. WSN security mechanisms should not only focus on reducing the power consumption of the sensor devices, but they should also maintain high reliability and throughput needed by Smart Grid applications. In this paper, we present a WSN cybersecurity mechanism suitable for smart grid monitoring application. Our mechanism can detect and isolate various attacks in a smart grid environment, such as denial of sleep, forge and replay attacks in an energy efficient way. Simulation results show that our mechanism can outperform existing techniques while meeting the NERC CIP requirements.
Online Dynamic Security Assessment (DSA) is a dynamical system widely used for assessing and analyzing an electrical power system. The outcomes of DSA are used in many aspects of the operation of power system, from monitoring the system to determining remedial action schemes (e.g. the amount of generators to be shed at the event of a fault). Measurement from supervisory control and data acquisition (SCADA) and state estimation (SE) results are the inputs for online-DSA, however, the SE error, caused by sudden change in power flow or low convergence rate, could be unnoticed and skew the outcome. Therefore, generator shedding scheme cannot achieve optimum but must have some margin because we don't know how SE error caused by these problems will impact power system stability control. As a method for solving the problem, we developed SE error detection system (EDS), which is enabled by detecting the SE error that will impact power system transient stability. The method is comparing a threshold value and an index calculated by the difference between SE results and PMU observation data, using the distance from the fault point and the power flow value. Using the index, the reliability of the SE results can be verified. As a result, online-DSA can use the SE results while avoiding the bad SE results, assuring the outcome of the DSA assessment and analysis, such as the amount of generator shedding in order to prevent the power system's instability.
Power system simulation environments with appropriate time-fidelity are needed to enable rapid testing of new smart grid technologies and for coupled simulations of the underlying cyber infrastructure. This paper presents such an environment which operates with power system models in the PMU time frame, including data visualization and interactive control action capabilities. The flexible and extensible capabilities are demonstrated by interfacing with a cyber infrastructure simulation.
Technological advancement enables the need of internet everywhere. The power industry is not an exception in the technological advancement which makes everything smarter. Smart grid is the advanced version of the traditional grid, which makes the system more efficient and self-healing. Synchrophasor is a device used in smart grids to measure the values of electric waves, voltages and current. The phasor measurement unit produces immense volume of current and voltage data that is used to monitor and control the performance of the grid. These data are huge in size and vulnerable to attacks. Intrusion Detection is a common technique for finding the intrusions in the system. In this paper, a big data framework is designed using various machine learning techniques, and intrusions are detected based on the classifications applied on the synchrophasor dataset. In this approach various machine learning techniques like deep neural networks, support vector machines, random forest, decision trees and naive bayes classifications are done for the synchrophasor dataset and the results are compared using metrics of accuracy, recall, false rate, specificity, and prediction time. Feature selection and dimensionality reduction algorithms are used to reduce the prediction time taken by the proposed approach. This paper uses apache spark as a platform which is suitable for the implementation of Intrusion Detection system in smart grids using big data analytics.
Power system security is one of the key issues in the operation of smart grid system. Evaluation of power system security is a big challenge considering all the contingencies, due to huge computational efforts involved. Phasor measurement unit plays a vital role in real time power system monitoring and control. This paper presents static security assessment scheme for large scale inter connected power system with Phasor measurement unit using Artificial Neural Network. Voltage magnitude and phase angle are used as input variables of the ANN. The optimal location of PMU under base case and critical contingency cases are determined using Genetic algorithm. The performance of the proposed optimization model was tested with standard IEEE 30 bus system incorporating zero injection buses and successful results have been obtained.
This paper proposes a modified empirical-mode decomposition (EMD) filtering-based adaptive dynamic phasor estimation algorithm for the removal of exponentially decaying dc offset. Discrete Fourier transform does not have the ability to attain the accurate phasor of the fundamental frequency component in digital protective relays under dynamic system fault conditions because the characteristic of exponentially decaying dc offset is not consistent. EMD is a fully data-driven, not model-based, adaptive filtering procedure for extracting signal components. But the original EMD technique has high computational complexity and requires a large data series. In this paper, a short data series-based EMD filtering procedure is proposed and an optimum hermite polynomial fitting (OHPF) method is used in this modified procedure. The proposed filtering technique has high accuracy and convergent speed, and is greatly appropriate for relay applications. This paper illustrates the characteristics of the proposed technique and evaluates its performance by computer-simulated signals, PSCAD/EMTDC-generated signals, and real power system fault signals.
In the United States, the number of Phasor Measurement Units (PMU) will increase from 166 networked devices in 2010 to 1043 in 2014. According to the Department of Energy, they are being installed in order to “evaluate and visualize reliability margin (which describes how close the system is to the edge of its stability boundary).” However, there is still a lot of debate in academia and industry around the usefulness of phase angles as unambiguous predictors of dynamic stability. In this paper, using 4-year of actual data from Hydro-Québec EMS, it is shown that phase angles enable satisfactory predictions of power transfer and dynamic security margins across critical interface using random forest models, with both explanation level and R-squares accuracy exceeding 99%. A generalized linear model (GLM) is next implemented to predict phase angles from day-ahead to hour-ahead time frames, using historical phase angles values and load forecast. Combining GLM based angles forecast with random forest mapping of phase angles to power transfers result in a new data-driven approach for dynamic security monitoring.
Wide area monitoring, protection and control for power network systems are one of the fundamental components of the smart grid concept. Synchronized measurement technology such as the Phasor Measurement Units (PMUs) will play a major role in implementing these components and they have the potential to provide reliable and secure full system observability. The problem of Optimal Placement of PMUs (OPP) consists of locating a minimal set of power buses where the PMUs must be placed in order to provide full system observability. In this paper a novel solution to the OPP problem using a Memetic Algorithm (MA) is proposed. The implemented MA combines the global optimization power of genetic algorithms with local solution tuning using the hill-climbing method. The performance of the proposed approach was demonstrated on IEEE benchmark power networks as well as on a segment of the Idaho region power network. It was shown that the proposed solution using a MA features significantly faster convergence rate towards the optimum solution.
This paper presents an overview of the research project “High-Performance Hybrid Simulation/Measurement-Based Tools for Proactive Operator Decision-Support”, performed under the auspices of the U.S. Department of Energy grant DE-OE0000628. The objective of this project is to develop software tools to provide enhanced real-time situational awareness to support the decision making and system control actions of transmission operators. The integrated tool will combine high-performance dynamic simulation with synchrophasor measurement data to assess in real time system dynamic performance and operation security risk. The project includes: (i) The development of high-performance dynamic simulation software; (ii) the development of new computationally effective measurement-based tools to estimate operating margins of a power system in real time using measurement data from synchrophasors and SCADA; (iii) the development a hybrid framework integrating measurement-based and simulation-based approaches, and (iv) the use of cutting-edge visualization technology to display various system quantities and to visually process the results of the hybrid measurement-base/simulation-based security-assessment tool. Parallelization and high performance computing are utilized to enable ultrafast transient stability analysis that can be used in a real-time environment to quickly perform “what-if” simulations involving system dynamics phenomena. EPRI's Extended Transient Midterm Simulation Program (ETMSP) is modified and enhanced for this work. The contingency analysis is scaled for large-scale contingency analysis using MPI-based parallelization. Simulations of thousands of contingencies on a high performance computing machine are performed, and results show that parallelization over contingencies with MPI provides good scalability and computational gains. Different ways to reduce the I/O bottleneck have been also exprored. Thread-parallelization of the sparse linear solve is explored also through use of the SuperLU_MT library. Based on performance profiling results for the implicit method, the majority of CPU time is spent on the integration steps. Hence, in order to further improve the ETMSP performance, a variable time step control scheme for the original trapezoidal integration method has been developed and implemented. The Adams-Bashforth-Moulton predictor-corrector method was introduced and designed for ETMSP. Test results show superior performance with this method.
When the system is in normal state, actual SCADA measurements of power transfers across critical interfaces are continuously compared with limits determined offline and stored in look-up tables or nomograms in order to assess whether the network is secure or insecure and inform the dispatcher to take preventive action in the latter case. However, synchrophasors could change this paradigm by enabling new features, the phase-angle differences, which are well-known measures of system stress, with the added potential to increase system visibility. The paper develops a systematic approach to baseline the phase-angles versus actual transfer limits across system interfaces and enable synchrophasor-based situational awareness (SBSA). Statistical methods are first used to determine seasonal exceedance levels of angle shifts that can allow real-time scoring and detection of atypical conditions. Next, key buses suitable for SBSA are identified using correlation and partitioning around medoid (PAM) clustering. It is shown that angle shifts of this subset of 15% of the network backbone buses can be effectively used as features in ensemble decision tree-based forecasting of seasonal security margins across critical interfaces.
The Department of Energy seeks to modernize the U.S. electric grid through the SmartGrid initiative, which includes the use of Global Positioning System (GPS)-timing dependent electric phasor measurement units (PMUs) for continual monitoring and automated controls. The U.S. Department of Homeland Security is concerned with the associated risks of increased utilization of GPS timing in the electricity subsector, which could in turn affect a large number of electricity-dependent Critical Infrastructure (CI) sectors. Exploiting the vulnerabilities of GPS systems in the electricity subsector can result to large-scale and costly blackouts. This paper seeks to analyze the risks of increased dependence of GPS into the electric grid through the introduction of PMUs and provides a systems engineering perspective to the GPS-dependent System of Systems (S-o-S) created by the SmartGrid initiative. The team started by defining and modeling the S-o-S followed by usage of a risk analysis methodology to identify and measure risks and evaluate solutions to mitigating the effects of the risks. The team expects that the designs and models resulting from the study will prove useful in terms of determining both current and future risks to GPS-dependent CIs sectors along with the appropriate countermeasures as the United States moves towards a SmartGrid system.
The addition of synchrophasors such as phasor measurement units (PMUs) to the existing power grid will enhance real-time monitoring and analysis of the grid. The PMU collects bus voltage, line current, and frequency measurements and uses the communication network to send the measurements to the respective substation(s)/control center(s). Since this approach relies on network infrastructure, possible cyber security vulnerabilities have to be addressed to ensure that is stable, secure, and reliable. In this paper, security vulnerabilities associated with a synchrophasor network in a benchmark IEEE 68 bus (New England/New York) power system model are examined. Currently known feasible attacks are demonstrated. Recommended testing and verification methods are also presented.
This paper presents an overview of the research project “High-Performance Hybrid Simulation/Measurement-Based Tools for Proactive Operator Decision-Support”, performed under the auspices of the U.S. Department of Energy grant DE-OE0000628. The objective of this project is to develop software tools to provide enhanced real-time situational awareness to support the decision making and system control actions of transmission operators. The integrated tool will combine high-performance dynamic simulation with synchrophasor measurement data to assess in real time system dynamic performance and operation security risk. The project includes: (i) The development of high-performance dynamic simulation software; (ii) the development of new computationally effective measurement-based tools to estimate operating margins of a power system in real time using measurement data from synchrophasors and SCADA; (iii) the development a hybrid framework integrating measurement-based and simulation-based approaches, and (iv) the use of cutting-edge visualization technology to display various system quantities and to visually process the results of the hybrid measurement-base/simulation-based security-assessment tool. Parallelization and high performance computing are utilized to enable ultrafast transient stability analysis that can be used in a real-time environment to quickly perform “what-if” simulations involving system dynamics phenomena. EPRI's Extended Transient Midterm Simulation Program (ETMSP) is modified and enhanced for this work. The contingency analysis is scaled for large-scale contingency analysis using MPI-based parallelization. Simulations of thousands of contingencies on a high performance computing machine are performed, and results show that parallelization over contingencies with MPI provides good scalability and computational gains. Different ways to reduce the I/O bottleneck have been also exprored. Thread-parallelization of the sparse linear solve is explored also through use of the SuperLU_MT library. Based on performance profiling results for the implicit method, the majority of CPU time is spent on the integration steps. Hence, in order to further improve the ETMSP performance, a variable time step control scheme for the original trapezoidal integration method has been developed and implemented. The Adams-Bashforth-Moulton predictor-corrector method was introduced and designed for ETMSP. Test results show superior performance with this method.