Visible to the public Biblio

Filters: Keyword is Integrated circuit modeling  [Clear All Filters]
2023-03-06
Grebenyuk, Konstantin A..  2021.  Motivation Generator: An Empirical Model of Intrinsic Motivation for Learning. 2021 IEEE International Conference on Engineering, Technology & Education (TALE). :1001–1005.
In present research, an empirical model for building and maintaining students' intrinsic motivation to learn is proposed. Unlike many other models of motivation, this model is not based on psychological theories but is derived directly from empirical observations made by experienced learners and educators. Thanks to empirical nature of the proposed model, its application to educational practice may be more straightforward in comparison with assumptions-based motivation theories. Interestingly, the structure of the proposed model resembles to some extent the structure of the oscillator circuit containing an amplifier and a positive feedback loop.
ISSN: 2470-6698
2022-09-30
Burgetová, Ivana, Matoušek, Petr, Ryšavý, Ondřej.  2021.  Anomaly Detection of ICS Communication Using Statistical Models. 2021 17th International Conference on Network and Service Management (CNSM). :166–172.
Industrial Control System (ICS) transmits control and monitoring data between devices in an industrial environment that includes smart grids, water and gas distribution, or traffic control. Unlike traditional internet communication, ICS traffic is stable, periodical, and with regular communication patterns that can be described using statistical modeling. By observing selected features of ICS transmission, e.g., packet direction and inter-arrival times, we can create a statistical profile of the communication based on distribution of features learned from the normal ICS traffic. This paper demonstrates that using statistical modeling, we can detect various anomalies caused by irregular transmissions, device or link failures, and also cyber attacks like packet injection, scanning, or denial of service (DoS). The paper shows how a statistical model is automatically created from a training dataset. We present two types of statistical profiles: the master-oriented profile for one-to-many communication and the peer-to-peer profile that describes traffic between two ICS devices. The proposed approach is fast and easy to implement as a part of an intrusion detection system (IDS) or an anomaly detection (AD) module. The proof-of-concept is demonstrated on two industrial protocols: IEC 60870-5-104 (aka IEC 104) and IEC 61850 (Goose).
Matoušek, Petr, Havlena, Vojtech, Holík, Lukáš.  2021.  Efficient Modelling of ICS Communication For Anomaly Detection Using Probabilistic Automata. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :81–89.
Industrial Control System (ICS) communication transmits monitoring and control data between industrial processes and the control station. ICS systems cover various domains of critical infrastructure such as the power plants, water and gas distribution, or aerospace traffic control. Security of ICS systems is usually implemented on the perimeter of the network using ICS enabled firewalls or Intrusion Detection Systems (IDSs). These techniques are helpful against external attacks, however, they are not able to effectively detect internal threats originating from a compromised device with malicious software. In order to mitigate or eliminate internal threats against the ICS system, we need to monitor ICS traffic and detect suspicious data transmissions that differ from common operational communication. In our research, we obtain ICS monitoring data using standardized IPFIX flows extended with meta data extracted from ICS protocol headers. Unlike other anomaly detection approaches, we focus on modelling the semantics of ICS communication obtained from the IPFIX flows that describes typical conversational patterns. This paper presents a technique for modelling ICS conversations using frequency prefix trees and Deterministic Probabilistic Automata (DPA). As demonstrated on the attack scenarios, these models are efficient to detect common cyber attacks like the command injection, packet manipulation, network scanning, or lost connection. An important advantage of our approach is that the proposed technique can be easily integrated into common security information and event management (SIEM) systems with Netflow/IPFIX support. Our experiments are performed on IEC 60870-5-104 (aka IEC 104) control communication that is widely used for the substation control in smart grids.
2022-09-09
Vosatka, Jason, Stern, Andrew, Hossain, M.M., Rahman, Fahim, Allen, Jeffery, Allen, Monica, Farahmandi, Farimah, Tehranipoor, Mark.  2020.  Confidence Modeling and Tracking of Recycled Integrated Circuits, Enabled by Blockchain. 2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID). :1—3.
The modern electronics supply chain is a globalized marketplace with the increasing threat of counterfeit integrated circuits (ICs) being installed into mission critical systems. A number of methods for detecting counterfeit ICs exist; however, effective test and evaluation (T&E) methods to assess the confidence of detecting recycled ICs are needed. Additionally, methods for the trustworthy tracking of recycled ICs in the supply chain are also needed. In this work, we propose a novel methodology to address the detection and tracking of recycled ICs at each stage of the electronics supply chain. We present a case study demonstrating our assessment model to calculate the confidence levels of authentic and recycled ICs, and to confidently track these types of ICs throughout the electronics supply chain.
2022-06-09
Jin, Shiyi, Chung, Jin-Gyun, Xu, Yinan.  2021.  Signature-Based Intrusion Detection System (IDS) for In-Vehicle CAN Bus Network. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.

In-vehicle CAN (Controller Area Network) bus network does not have any network security protection measures, which is facing a serious network security threat. However, most of the intrusion detection solutions requiring extensive computational resources cannot be implemented in in- vehicle network system because of the resource constrained ECUs. To add additional hardware or to utilize cloud computing, we need to solve the cost problem and the reliable communication requirement between vehicles and cloud platform, which is difficult to be applied in a short time. Therefore, we need to propose a short-term solution for automobile manufacturers. In this paper, we propose a signature-based light-weight intrusion detection system, which can be applied directly and promptly to vehicle's ECUs (Electronic Control Units). We detect the anomalies caused by several attack modes on CAN bus from real-world scenarios, which provide the basis for selecting signatures. Experimental results show that our method can effectively detect CAN traffic related anomalies. For the content related anomalies, the detection ratio can be improved by exploiting the relationship between the signals.

2022-05-19
Su, Yu, Shen, Haihua, Lu, Renjie, Ye, Yunying.  2021.  A Stealthy Hardware Trojan Design and Corresponding Detection Method. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–6.
For the purpose of stealthiness, trigger-based Hardware Trojans(HTs) tend to have at least one trigger signal with an extremely low transition probability to evade the functional verification. In this paper, we discuss the correlation between poor testability and low transition probability, and then propose a kind of systematic Trojan trigger model with extremely low transition probability but reasonable testability, which can disable the Controllability and Observability for hardware Trojan Detection (COTD) technique, an efficient HT detection method based on circuits testability. Based on experiments and tests on circuits, we propose that the more imbalanced 0/1-controllability can indicate the lower transition probability. And a trigger signal identification method using the imbalanced 0/1-controllability is proposed. Experiments on ISCAS benchmarks show that the proposed method can obtain a 100% true positive rate and average 5.67% false positive rate for the trigger signal.
Ponugoti, Kushal K., Srinivasan, Sudarshan K., Mathure, Nimish.  2021.  Formal Verification Approach to Detect Always-On Denial of Service Trojans in Pipelined Circuits. 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). :1–6.
Always-On Denial of Service (DoS) Trojans with power drain payload can be disastrous in systems where on-chip power resources are limited. These Trojans are designed so that they have no impact on system behavior and hence, harder to detect. A formal verification method is presented to detect sequential always-on DoS Trojans in pipelined circuits and pipelined microprocessors. Since the method is proof-based, it provides a 100% accurate classification of sequential Trojan components. Another benefit of the approach is that it does not require a reference model, which is one of the requirements of many Trojan detection techniques (often a bottleneck to practical application). The efficiency and scalability of the proposed method have been evaluated on 36 benchmark circuits. The most complex of these benchmarks has as many as 135,898 gates. Detection times are very efficient with a 100% rate of detection, i.e., all Trojan sequential elements were detected and all non-trojan sequential elements were classified as such.
S, Deepthi, R, Ramesh S., M, Nirmala Devi.  2021.  Hardware Trojan Detection using Ring Oscillator. 2021 6th International Conference on Communication and Electronics Systems (ICCES). :362–368.
Hardware Trojans are malicious modules causing vulnerabilities in designs. Secured hardware designs are desirable in almost all applications. So, it is important to make a trustworthy design that actually exposes malfunctions when a Trojan is present in it. Recently, ring oscillator based detection methods are gaining prominence as they help in detecting Trojans accurately. In this work, a non-destructive method of Trojan detection by modifying the circuit paths into oscillators is proposed. The change in frequencies of ring oscillators upon taking the process corners into account, indicate the presence of Trojans. Since Transient Effect Ring Oscillators (TERO) are also emerging as a good alternative to classical ring oscillators in Trojan detection, an effort is made to analyze the detection capability. Evaluation is done using ISCAS'85 benchmark circuits. Comparison is done in terms of frequency and findings indicate that TERO based Trojan detection is precise. Evaluation is carried out using Xilinx Vivado and ModelSim platforms.
2022-05-05
Gupt, Krishn Kumar, Kshirsagar, Meghana, Sullivan, Joseph P., Ryan, Conor.  2021.  Automatic Test Case Generation for Prime Field Elliptic Curve Cryptographic Circuits. 2021 IEEE 17th International Colloquium on Signal Processing Its Applications (CSPA). :121—126.
Elliptic curve is a major area of research due to its application in elliptic curve cryptography. Due to their small key sizes, they offer the twofold advantage of reduced storage and transmission requirements. This also results in faster execution times. The authors propose an architecture to automatically generate test cases, for verification of elliptic curve operational circuits, based on user-defined prime field and the parameters used in the circuit to be tested. The ECC test case generations are based on the Galois field arithmetic operations which were the subject of previous work by the authors. One of the strengths of elliptic curve mathematics is its simplicity, which involves just three points (P, Q, and R), which pass through a line on the curve. The test cases generate points for a user-defined prime field which sequentially selects the input vector points (P and/or Q), to calculate the resultant output vector (R) easily. The testbench proposed here targets field programmable gate array (FPGAs) platforms and experimental results for ECC test case generation on different prime fields are presented, while ModelSim is used to validate the correctness of the ECC operations.
2022-04-20
Junjie, Tang, Jianjun, Zhao, Jianwan, Ding, Liping, Chen, Gang, Xie, Bin, Gu, Mengfei, Yang.  2012.  Cyber-Physical Systems Modeling Method Based on Modelica. 2012 IEEE Sixth International Conference on Software Security and Reliability Companion. :188–191.
Cyber-physical systems (CPS) is an integration of computation with physical systems and physical processes. It is widely used in energy, health and other industrial areas. Modeling and simulation is of the greatest challenges in CPS research. Modelica has a great potentiality in the modeling and simulation of CPS. We analyze the characteristics and requirements of CPS modeling, and also the features of Modelica in the paper. In respect of information model, physical model and model interface, this paper introduces a unified modeling method for CPS, based on Modelica. The method provides a reliable foundation for the design, analysis and verification of CPS.
2022-03-22
O’Toole, Sean, Sewell, Cameron, Mehrpouyan, Hoda.  2021.  IoT Security and Safety Testing Toolkits for Water Distribution Systems. 2021 8th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1—8.

Due to the critical importance of Industrial Control Systems (ICS) to the operations of cities and countries, research into the security of critical infrastructure has become increasingly relevant and necessary. As a component of both the research and application sides of smart city development, accurate and precise modeling, simulation, and verification are key parts of a robust design and development tools that provide critical assistance in the prevention, detection, and recovery from abnormal behavior in the sensors, controllers, and actuators which make up a modern ICS system. However, while these tools have potential, there is currently a need for helper-tools to assist with their setup and configuration, if they are to be utilized widely. Existing state-of-the-art tools are often technically complex and difficult to customize for any given IoT/ICS processes. This is a serious barrier to entry for most technicians, engineers, researchers, and smart city planners, while slowing down the critical aspects of safety and security verification. To remedy this issue, we take a case study of existing simulation toolkits within the field of water management and expand on existing tools and algorithms with simplistic automated retrieval functionality using a much more in-depth and usable customization interface to accelerate simulation scenario design and implementation, allowing for customization of the cyber-physical network infrastructure and cyber attack scenarios. We additionally provide a novel in-tool-assessment of network’s resilience according to graph theory path diversity. Further, we lay out a roadmap for future development and application of the proposed tool, including expansions on resiliency and potential vulnerability model checking, and discuss applications of our work to other fields relevant to the design and operation of smart cities.

2022-03-01
Chaves, Cesar G., Sepulveda, Johanna, Hollstein, Thomas.  2021.  Lightweight Monitoring Scheme for Flooding DoS Attack Detection in Multi-Tenant MPSoCs. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
The increasing use of Multiprocessor Systems-on-Chip (MPSoCs) within scalable multi-tenant systems, such as fog/cloud computing, faces the challenge of potential attacks originated by the execution of malicious tasks. Flooding Denial- of-Service (FDoS) attacks are one of the most common and powerful threats for Network-on-Chip (NoC)-based MPSoCs. Since, by overwhelming the NoC, the system is unable to forward legitimate traffic. However, the effectiveness of FDoS attacks depend on the NoC configuration. Moreover, designing a secure MPSoC capable of detecting such attacks while avoiding excessive power/energy and area costs is challenging. To this end, we present two contributions. First, we demonstrate two types of FDoS attacks: based on the packet injection rate (PIR-based FDoS) and based on the packet's payload length (PPL-based FDoS). We show that fair round-robin NoCs are intrinsically protected against PIR-based FDoS. Instead, PPL-based FDoS attacks represent a real threat to MPSoCs. Second, we propose a novel lightweight monitoring method for detecting communication disruptions. Simulation and synthesis results show the feasibility and efficiency of the presented approach.
2022-02-04
Chowdhury, Subhajit Dutta, Zhang, Gengyu, Hu, Yinghua, Nuzzo, Pierluigi.  2021.  Enhancing SAT-Attack Resiliency and Cost-Effectiveness of Reconfigurable-Logic-Based Circuit Obfuscation. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
Logic locking is a well-explored defense mechanism against various types of hardware security attacks. Recent approaches to logic locking replace portions of a circuit with reconfigurable blocks such as look-up tables (LUTs) and switch boxes (SBs) to primarily achieve logic and routing obfuscation, respectively. However, these techniques may incur significant design overhead, and methods that can mitigate the implementation cost for a given security level are desirable. In this paper, we address this challenge by proposing an algorithm for deciding the location and inputs of the LUTs in LUT-based obfuscation to enhance security and reduce design overhead. We then introduce a locking method that combines LUTs with SBs to further robustify LUT-based obfuscation, largely independently of the specific LUT locations. We illustrate the effectiveness of the proposed approaches on a set of ISCAS benchmark circuits.
2021-12-20
Park, Kyuchan, Ahn, Bohyun, Kim, Jinsan, Won, Dongjun, Noh, Youngtae, Choi, JinChun, Kim, Taesic.  2021.  An Advanced Persistent Threat (APT)-Style Cyberattack Testbed for Distributed Energy Resources (DER). 2021 IEEE Design Methodologies Conference (DMC). :1–5.
Advanced Persistent Threat (APT) is a professional stealthy threat actor who uses continuous and sophisticated attack techniques which have not been well mitigated by existing defense strategies. This paper proposes an APT-style cyber-attack tested for distributed energy resources (DER) in cyber-physical environments. The proposed security testbed consists of: 1) a real-time DER simulator; 2) a real-time cyber system using real network systems and a server; and 3) penetration testing tools generating APT-style attacks as cyber events. Moreover, this paper provides a cyber kill chain model for a DER system based on a latest MITRE’s cyber kill chain model to model possible attack stages. Several real cyber-attacks are created and their impacts in a DER system are provided to validate the feasibility of the proposed security testbed for DER systems.
2021-11-08
Gayatri, R, Gayatri, Yendamury.  2020.  Detection of Trojan Based DoS Attacks on RSA Cryptosystem Using Hybrid Supervised Learning Models. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :1–5.
Privacy and security have become the most important aspects in any sphere of technology today from embedded systems to VLS I circuits. One such an attack compromising the privacy, security and trust of a networked control system by making them vulnerable to unauthorized access is the Hardware Trojan Horses. Even cryptographic algorithms whose purpose is to safeguard information are susceptible to these Trojan attacks. This paper discusses hybrid supervised machine learning models that predict with great accuracy whether the RSA asymmetric cryptosystem implemented in Atmel XMega microcontroller is Trojan-free (Golden) or Trojan-infected by analyzing the power profiles of the golden algorithm and trojan-infected algorithm. The power profiles are obtained using the ChipWhisperer Lite Board. The features selected from the power profiles are used to create datasets for the proposed hybrid models and train the proposed models using the 70/30 rule. The proposed hybrid models can be concluded that it has an accuracy of more than 88% irrespective of the Trojan types and size of the datasets.
Zeng, Zitong, Li, Lei, Zhou, Wanting, Yang, Ji, He, Yuanhang.  2020.  IR-Drop Calibration for Hardware Trojan Detection. 2020 13th International Symposium on Computational Intelligence and Design (ISCID). :418–421.
Process variation is the critical issue in hardware Trojan detection. In the state-of-art works, ring oscillators are employed to address this problem. But ring oscillators are very sensitive to IR-drop effect, which exists ICs. In this paper, based on circuit theory, a IR-drop calibration method is proposed. The nominal power supply voltage and the others power supply voltage with a very small difference of the nominal power supply voltage are applied to the test chip. It is assumed that they have the same IR-drop $Δ$V. Combined with these measured data, the value of Vth + $Δ$V, can be obtained by mathematic analysis. The typical Vth from circuit simulation is used to compute $Δ$V. We studied the proposed method in a tested chip.
Tang, Nan, Zhou, Wanting, Li, Lei, Yang, Ji, Li, Rui, He, Yuanhang.  2020.  Hardware Trojan Detection Method Based on the Frequency Domain Characteristics of Power Consumption. 2020 13th International Symposium on Computational Intelligence and Design (ISCID). :410–413.
Hardware security has long been an important issue in the current IC design. In this paper, a hardware Trojan detection method based on frequency domain characteristics of power consumption is proposed. For some HTs, it is difficult to detect based on the time domain characteristics, these types of hardware Trojan can be analyzed in the frequency domain, and Mahalanobis distance is used to classify designs with or without HTs. The experimental results demonstrate that taking 10% distance as the criterion, the hardware Trojan detection results in the frequency domain have almost no failure cases in all the tested designs.
2021-10-04
Sweeney, Joseph, Mohammed Zackriya, V, Pagliarini, Samuel, Pileggi, Lawrence.  2020.  Latch-Based Logic Locking. 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :132–141.
Globalization of IC manufacturing has led to increased security concerns, notably IP theft. Several logic locking techniques have been developed for protecting designs, but they typically display very large overhead, and are generally susceptible to deciphering attacks. In this paper, we propose latch-based logic locking, which manipulates both the flow of data and logic in the design. This method converts an interconnected subset of existing flip-flops to pairs of latches with programmable phase. In tandem, decoy latches and logic are added, inhibiting an attacker from determining the actual design functionality. To validate this technique, we developed and verified a locking insertion flow, analyzed PPA and ATPG overhead on benchmark circuits and industry cores, extended existing attacks to account for the technique, and taped out a demonstration chip. Importantly, we show that the design overhead with this approach is significantly less than with previous logic locking schemes, while resisting model checker-based, oracle-driven attacks. With minimal delay overhead, large numbers of decoy latches can be added, cheaply increasing attack resistance.
2021-09-30
Bagbaba, Ahmet Cagri, Jenihhin, Maksim, Ubar, Raimund, Sauer, Christian.  2020.  Representing Gate-Level SET Faults by Multiple SEU Faults at RTL. 2020 IEEE 26th International Symposium on On-Line Testing and Robust System Design (IOLTS). :1–6.
The advanced complex electronic systems increasingly demand safer and more secure hardware parts. Correspondingly, fault injection became a major verification milestone for both safety- and security-critical applications. However, fault injection campaigns for gate-level designs suffer from huge execution times. Therefore, designers need to apply early design evaluation techniques to reduce the execution time of fault injection campaigns. In this work, we propose a method to represent gate-level Single-Event Transient (SET) faults by multiple Single-Event Upset (SEU) faults at the Register-Transfer Level. Introduced approach is to identify true and false logic paths for each SET in the flip-flops' fan-in logic cones to obtain more accurate sets of flip-flops for multiple SEUs injections at RTL. Experimental results demonstrate the feasibility of the proposed method to successfully reduce the fault space and also its advantage with respect to state of the art. It was shown that the approach is able to reduce the fault space, and therefore the fault-injection effort, by up to tens to hundreds of times.
2021-08-31
Szolga, L.A., Groza, R.G..  2020.  Phosphor Based White LED Driver by Taking Advantage on the Remanence Effect. 2020 IEEE 26th International Symposium for Design and Technology in Electronic Packaging (SIITME). :265–269.
This paper presents the development of a control circuit to enhance the performances of LED lamps. In this direction, a comparison between the luminous intensity of normal LED based lamps and mid-power ones, for both continuous and switching conditions has been made. The already well know control technologies were analyzed and a study was conducted to increase the lighting performances by rising the operating frequency and magnifying the contribution of remanence effect and thus increasing the efficiency of the light source. To achieve this, in the first stage of the project the power and control circuits have been modeled, related to desired parameters and tested in simulation software. In the second stage, the proposed circuit was implemented by functional blocks and in the last stage, tests were made on the circuit and on light sources in order to process the results. The power consumption has been decreased nearly to a half of it and the luminous flux raised with 15% due to overcurrent and remanence effect that we used.
2021-08-11
Karmakar, Rajit, Chattopadhyay, Santanu.  2020.  Hardware IP Protection Using Logic Encryption and Watermarking. 2020 IEEE International Test Conference (ITC). :1—10.
Logic encryption is a popular Design-for-Security(DfS) solution that offers protection against the potential adversaries in the third-party fab labs and end-users. However, over the years, logic encryption has been a target of several attacks, especially Boolean satisfiability attacks. This paper exploits SAT attack's inability of deobfuscating sequential circuits as a defense against it. We propose several strategies capable of preventing the SAT attack by obfuscating the scan-based Design-for-Testability (DfT) infrastructure. Unlike the existing SAT-resilient schemes, the proposed techniques do not suffer from poor output corruption for wrong keys. This paper also offers various probable solutions for inserting the key-gates into the circuit that ensures protection against numerous other attacks, which exploit weak key-gate locations. Along with several gate-level obfuscation strategies, this paper also presents a Cellular Automata (CA) guided FSM obfuscation strategy to offer protection at a higher abstraction level, that is, RTL-level. For all the proposed schemes, rigorous security analysis against various attacks evaluates their strengths and limitations. Testability analysis also ensures that none of the proposed techniques hamper the basic testing properties of the ICs. We also present a CA-based FSM watermarking strategy that helps to detect potential theft of the designer's IP by any adversary.
2021-07-27
Reviriego, Pedro, Rottenstreich, Ori.  2020.  Pollution Attacks on Counting Bloom Filters for Black Box Adversaries. 2020 16th International Conference on Network and Service Management (CNSM). :1–7.
The wide adoption of Bloom filters makes their security an important issue to be addressed. For example, an attacker can increase their error rate through polluting and eventually saturating the filter by inserting elements that set to one a large number of positions in the filter. This is known as a pollution attack and requires that the attacker knows the hash functions used to construct the filter. Such information is not available in many practical settings and in addition a simple protection can be achieved through using a random salt in the hash functions. The same pollution attacks can also be done to counting Bloom filters that in addition to insertions and lookups support removals. This paper considers pollution attacks on counting Bloom filters. We describe two novel pollution attacks that do not require any knowledge of the counting Bloom filter implementation details and evaluate them. These methods show that a counting Bloom filter is vulnerable to pollution attacks even when the attacker has only access to the filter as a black box to perform insertions, removals, and lookups.
2021-04-27
Zerrouki, F., Ouchani, S., Bouarfa, H..  2020.  Quantifying Security and Performance of Physical Unclonable Functions. 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1—4.

Physical Unclonable Function is an innovative hardware security primitives that exploit the physical characteristics of a physical object to generate a unique identifier, which play the role of the object's fingerprint. Silicon PUF, a popular type of PUFs, exploits the variation in the manufacturing process of integrated circuits (ICs). It needs an input called challenge to generate the response as an output. In addition, of classical attacks, PUFs are vulnerable to physical and modeling attacks. The performance of the PUFs is measured by several metrics like reliability, uniqueness and uniformity. So as an evidence, the main goal is to provide a complete tool that checks the strength and quantifies the performance of a given physical unconscionable function. This paper provides a tool and develops a set of metrics that can achieve safely the proposed goal.

2021-04-09
Lin, T., Shi, Y., Shu, N., Cheng, D., Hong, X., Song, J., Gwee, B. H..  2020.  Deep Learning-Based Image Analysis Framework for Hardware Assurance of Digital Integrated Circuits. 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). :1—6.
We propose an Artificial Intelligence (AI)/Deep Learning (DL)-based image analysis framework for hardware assurance of digital integrated circuits (ICs). Our aim is to examine and verify various hardware information from analyzing the Scanning Electron Microscope (SEM) images of an IC. In our proposed framework, we apply DL-based methods at all essential steps of the analysis. To the best of our knowledge, this is the first such framework that makes heavy use of DL-based methods at all essential analysis steps. Further, to reduce time and effort required in model re-training, we propose and demonstrate various automated or semi-automated training data preparation methods and demonstrate the effectiveness of using synthetic data to train a model. By applying our proposed framework to analyzing a set of SEM images of a large digital IC, we prove its efficacy. Our DL-based methods are fast, accurate, robust against noise, and can automate tasks that were previously performed mainly manually. Overall, we show that DL-based methods can largely increase the level of automation in hardware assurance of digital ICs and improve its accuracy.
2021-03-30
Tai, J., Alsmadi, I., Zhang, Y., Qiao, F..  2020.  Machine Learning Methods for Anomaly Detection in Industrial Control Systems. 2020 IEEE International Conference on Big Data (Big Data). :2333—2339.

This paper examines multiple machine learning models to find the model that best indicates anomalous activity in an industrial control system that is under a software-based attack. The researched machine learning models are Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Recurrent Neural Network classifiers built-in Python and tested against the HIL-based Augmented ICS dataset. Although the results showed that Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Long Short-Term Memory classification models have great potential for anomaly detection in industrial control systems, we found that Random Forest with tuned hyperparameters slightly outperformed the other models.