Visible to the public Biblio

Found 235 results

Filters: Keyword is Smart grid  [Clear All Filters]
2015-05-01
Bo Chai, Zaiyue Yang, Jiming Chen.  2014.  Impacts of unreliable communication and regret matching based anti-jamming approach in smart grid. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

Demand response management (DRM) is one of the main features in smart grid, which is realized via communications between power providers and consumers. Due to the vulnerabilities of communication channels, communication is not perfect in practice and will be threatened by jamming attack. In this paper, we consider jamming attack in the wireless communication for smart grid. Firstly, the DRM performance degradation introduced by unreliable communication is fully studied. Secondly, a regret matching based anti-jamming algorithm is proposed to enhance the performance of communication and DRM. Finally, numerical results are presented to illustrate the impacts of unreliable communication on DRM and the performance of the proposed anti-jamming algorithm.

Ming Shange, Jingqiang Lin, Xiaokun Zhang, Changwei Xu.  2014.  A game-theory analysis of the rat-group attack in smart grids. Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2014 IEEE Ninth International Conference on. :1-6.

More and more intelligent functions are proposed, designed and implemented in meters to make the power supply be smart. However, these complex functions also bring risks to the smart meters, and they become susceptible to vulnerabilities and attacks. We present the rat-group attack in this paper, which exploits the vulnerabilities of smart meters in the cyber world, but spreads in the physical world due to the direct economic benefits. To the best of our knowledge, no systematic work has been conducted on this attack. Game theory is then applied to analyze this attack, and two game models are proposed and compared under different assumptions. The analysis results suggest that the power company shall follow an open defense policy: disclosing the defense parameters to all users (i.e., the potential attackers), results in less loss in the attack.

Sgouras, K.I., Birda, A.D., Labridis, D.P..  2014.  Cyber attack impact on critical Smart Grid infrastructures. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

Electrical Distribution Networks face new challenges by the Smart Grid deployment. The required metering infrastructures add new vulnerabilities that need to be taken into account in order to achieve Smart Grid functionalities without considerable reliability trade-off. In this paper, a qualitative assessment of the cyber attack impact on the Advanced Metering Infrastructure (AMI) is initially attempted. Attack simulations have been conducted on a realistic Grid topology. The simulated network consisted of Smart Meters, routers and utility servers. Finally, the impact of Denial-of-Service and Distributed Denial-of-Service (DoS/DDoS) attacks on distribution system reliability is discussed through a qualitative analysis of reliability indices.

Marashi, K., Sarvestani, S.S..  2014.  Towards Comprehensive Modeling of Reliability for Smart Grids: Requirements and Challenges. High-Assurance Systems Engineering (HASE), 2014 IEEE 15th International Symposium on. :105-112.


Smart grids utilize computation and communication to improve the efficacy and dependability of power generation, transmission, and distribution. As such, they are among the most critical and complex cyber-physical systems. The success of smart grids in achieving their stated goals is yet to be rigorously proven. In this paper, our focus is on improvements (or lack thereof) in reliability. We discuss vulnerabilities in the smart grid and their potential impact on its reliability, both generally and for the specific example of the IEEE-14 bus system. We conclude the paper by presenting a preliminary Markov imbedded systems model for reliability of smart grids and describe how it can be evolved to capture the vulnerabilities discussed.
 

Shipman, C.M., Hopkinson, K.M., Lopez, J..  2015.  Con-Resistant Trust for Improved Reliability in a Smart-Grid Special Protection System. Power Delivery, IEEE Transactions on. 30:455-462.

This paper applies a con-resistant trust mechanism to improve the performance of a communications-based special protection system to enhance its effectiveness and resiliency. Smart grids incorporate modern information technologies to increase reliability and efficiency through better situational awareness. However, with the benefits of this new technology come the added risks associated with threats and vulnerabilities to the technology and to the critical infrastructure it supports. The research in this paper uses con-resistant trust to quickly identify malicious or malfunctioning (untrustworthy) protection system nodes to mitigate instabilities. The con-resistant trust mechanism allows protection system nodes to make trust assessments based on the node's cooperative and defective behaviors. These behaviors are observed via frequency readings which are prediodically reported. The trust architecture is tested in experiments by comparing a simulated special protection system with a con-resistant trust mechanism to one without the mechanism via an analysis of the variance statistical model. Simulation results show promise for the proposed con-resistant trust mechanism.

Yang, Y., McLaughlin, K., Sezer, S., Littler, T., Im, E.G., Pranggono, B., Wang, H.F..  2014.  Multiattribute SCADA-Specific Intrusion Detection System for Power Networks. Power Delivery, IEEE Transactions on. 29:1092-1102.

The increased interconnectivity and complexity of supervisory control and data acquisition (SCADA) systems in power system networks has exposed the systems to a multitude of potential vulnerabilities. In this paper, we present a novel approach for a next-generation SCADA-specific intrusion detection system (IDS). The proposed system analyzes multiple attributes in order to provide a comprehensive solution that is able to mitigate varied cyber-attack threats. The multiattribute IDS comprises a heterogeneous white list and behavior-based concept in order to make SCADA cybersystems more secure. This paper also proposes a multilayer cyber-security framework based on IDS for protecting SCADA cybersecurity in smart grids without compromising the availability of normal data. In addition, this paper presents a SCADA-specific cybersecurity testbed to investigate simulated attacks, which has been used in this paper to validate the proposed approach.

Yingmeng Xiang, Lingfeng Wang, Yichi Zhang.  2014.  Power system adequacy assessment with probabilistic cyber attacks against breakers. PES General Meeting | Conference Exposition, 2014 IEEE. :1-5.

Modern power systems heavily rely on the associated cyber network, and cyber attacks against the control network may cause undesired consequences such as load shedding, equipment damage, and so forth. The behaviors of the attackers can be random, thus it is crucial to develop novel methods to evaluate the adequacy of the power system under probabilistic cyber attacks. In this study, the external and internal cyber structures of the substation are introduced, and possible attack paths against the breakers are analyzed. The attack resources and vulnerability factors of the cyber network are discussed considering their impacts on the success probability of a cyber attack. A procedure integrating the reliability of physical components and the impact of cyber attacks against breakers are proposed considering the behaviors of the physical devices and attackers. Simulations are conducted based on the IEEE RTS79 system. The impact of the attack resources and attack attempt numbers are analyzed for attackers from different threats groups. It is concluded that implementing effective cyber security measures is crucial to the cyber-physical power grids.

Beasley, C., Venayagamoorthy, G.K., Brooks, R..  2014.  Cyber security evaluation of synchrophasors in a power system. Power Systems Conference (PSC), 2014 Clemson University. :1-5.

The addition of synchrophasors such as phasor measurement units (PMUs) to the existing power grid will enhance real-time monitoring and analysis of the grid. The PMU collects bus voltage, line current, and frequency measurements and uses the communication network to send the measurements to the respective substation(s)/control center(s). Since this approach relies on network infrastructure, possible cyber security vulnerabilities have to be addressed to ensure that is stable, secure, and reliable. In this paper, security vulnerabilities associated with a synchrophasor network in a benchmark IEEE 68 bus (New England/New York) power system model are examined. Currently known feasible attacks are demonstrated. Recommended testing and verification methods are also presented.

Hong Liu, Huansheng Ning, Yan Zhang, Qingxu Xiong, Yang, L.T..  2014.  Role-Dependent Privacy Preservation for Secure V2G Networks in the Smart Grid. Information Forensics and Security, IEEE Transactions on. 9:208-220.

Vehicle-to-grid (V2G), involving both charging and discharging of battery vehicles (BVs), enhances the smart grid substantially to alleviate peaks in power consumption. In a V2G scenario, the communications between BVs and power grid may confront severe cyber security vulnerabilities. Traditionally, authentication mechanisms are solely designed for the BVs when they charge electricity as energy customers. In this paper, we first show that, when a BV interacts with the power grid, it may act in one of three roles: 1) energy demand (i.e., a customer); 2) energy storage; and 3) energy supply (i.e., a generator). In each role, we further demonstrate that the BV has dissimilar security and privacy concerns. Hence, the traditional approach that only considers BVs as energy customers is not universally applicable for the interactions in the smart grid. To address this new security challenge, we propose a role-dependent privacy preservation scheme (ROPS) to achieve secure interactions between a BV and power grid. In the ROPS, a set of interlinked subprotocols is proposed to incorporate different privacy considerations when a BV acts as a customer, storage, or a generator. We also outline both centralized and distributed discharging operations when a BV feeds energy back into the grid. Finally, security analysis is performed to indicate that the proposed ROPS owns required security and privacy properties and can be a highly potential security solution for V2G networks in the smart grid. The identified security challenge as well as the proposed ROPS scheme indicates that role-awareness is crucial for secure V2G networks.

2015-04-30
Zhuo Lu, Wenye Wang, Wang, C..  2015.  Camouflage Traffic: Minimizing Message Delay for Smart Grid Applications under Jamming. Dependable and Secure Computing, IEEE Transactions on. 12:31-44.

Smart grid is a cyber-physical system that integrates power infrastructures with information technologies. To facilitate efficient information exchange, wireless networks have been proposed to be widely used in the smart grid. However, the jamming attack that constantly broadcasts radio interference is a primary security threat to prevent the deployment of wireless networks in the smart grid. Hence, spread spectrum systems, which provide jamming resilience via multiple frequency and code channels, must be adapted to the smart grid for secure wireless communications, while at the same time providing latency guarantee for control messages. An open question is how to minimize message delay for timely smart grid communication under any potential jamming attack. To address this issue, we provide a paradigm shift from the case-by-case methodology, which is widely used in existing works to investigate well-adopted attack models, to the worst-case methodology, which offers delay performance guarantee for smart grid applications under any attack. We first define a generic jamming process that characterizes a wide range of existing attack models. Then, we show that in all strategies under the generic process, the worst-case message delay is a U-shaped function of network traffic load. This indicates that, interestingly, increasing a fair amount of traffic can in fact improve the worst-case delay performance. As a result, we demonstrate a lightweight yet promising system, transmitting adaptive camouflage traffic (TACT), to combat jamming attacks. TACT minimizes the message delay by generating extra traffic called camouflage to balance the network load at the optimum. Experiments show that TACT can decrease the probability that a message is not delivered on time in order of magnitude.