Visible to the public Biblio

Filters: Keyword is Batch verification  [Clear All Filters]
2022-03-15
Wang, Hong, Liu, Xiangyang, Xie, Yunhong, Zeng, Han.  2021.  The Scalable Group Testing of Invalid Signatures based on Latin Square in Wireless Sensors Networks. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :1153—1158.
Digital signature is more appropriate for message security in Wireless Sensors Networks (WSNs), which is energy-limited, than costly encryption. However, it meets with difficulty of verification when a large amount of message-signature pairs swarm into the central node in WSNs. In this paper, a scalable group testing algorithm based on Latin square (SGTLS) is proposed, which focus on both batch verification of signatures and invalid signature identification. To address the problem of long time-delay during individual verification, we adapt aggregate signature for batch verification so as to judge whether there are any invalid signatures among the collection of signatures once. In particular, when batch verification fails, an invalid signature identification algorithm is presented based on scalable OR-checking matrix of Latin square, which can adjust the number of group testing by itself with the variation of invalid signatures. Comprehensive analyses show that SGTLS has more advantages, such as scalability, suitability for parallel computing and flexible design (Latin square is popular), than other algorithm.
2021-06-30
Sikarwar, Himani, Nahar, Ankur, Das, Debasis.  2020.  LABVS: Lightweight Authentication and Batch Verification Scheme for Universal Internet of Vehicles (UIoV). 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1—6.
With the rapid technological advancement of the universal internet of vehicles (UIoV), it becomes crucial to ensure safe and secure communication over the network, in an effort to achieve the implementation objective of UIoV effectively. A UIoV is characterized by highly dynamic topology, scalability, and thus vulnerable to various types of security and privacy attacks (i.e., replay attack, impersonation attack, man-in-middle attack, non-repudiation, and modification). Since the components of UIoV are constrained by numerous factors (e.g., low memory devices, low power), which makes UIoV highly susceptible. Therefore, existing schemes to address the privacy and security facets of UIoV exhibit an enormous scope of improvement in terms of time complexity and efficiency. This paper presents a lightweight authentication and batch verification scheme (LABVS) for UIoV using a bilinear map and cryptographic operations (i.e., one-way hash function, concatenation, XOR) to minimize the rate of message loss occurred due to delay in response time as in single message verification scheme. Subsequently, the scheme results in a high level of security and privacy. Moreover, the performance analysis substantiates that LABVS minimizes the computational delay and has better performance in the delay-sensitive network in terms of security and privacy as compared to the existing schemes.
Sikarwar, Himani, Das, Debasis.  2020.  An Efficient Lightweight Authentication and Batch Verification Scheme for Universal Internet of Vehicles (UIoV). 2020 International Wireless Communications and Mobile Computing (IWCMC). :1266—1271.
Ensuring secure transmission over the communication channel is a fundamental responsibility to achieve the implementation objective of universal internet of vehicles (UIoV) efficiently. Characteristics like highly dynamic topology and scalability of UIoV makes it more vulnerable to different types of privacy and security attacks. Considerable scope of improvement in terms of time complexity and performance can be observed within the existing schemes that address the privacy and security aspects of UIoV. In this paper, we present an improvised authentication and lightweight batch verification method for security and privacy in UIoV. The suggested method reduces the message loss rate, which occurred due to the response time delay by implementing some low-cost cryptographic operations like one-way hash function, concatenation, XOR, and bilinear map. Furthermore, the performance analysis proves that the proposed method is more reliable that reduces the computational delay and has a better performance in the delay-sensitive network as compared to the existing schemes. The experimental results are obtained by implementing the proposed scheme on a desktop-based configuration as well as Raspberry Pi 4.
2020-09-04
Shi, Yang, Zhang, Qing, Liang, Jingwen, He, Zongjian, Fan, Hongfei.  2019.  Obfuscatable Anonymous Authentication Scheme for Mobile Crowd Sensing. IEEE Systems Journal. 13:2918—2929.

Mobile crowd sensing (MCS) is a rapidly developing technique for information collection from the users of mobile devices. This technique deals with participants' personal information such as their identities and locations, thus raising significant security and privacy concerns. Accordingly, anonymous authentication schemes have been widely considered for preserving participants' privacy in MCS. However, mobile devices are easy to lose and vulnerable to device capture attacks, which enables an attacker to extract the private authentication key of a mobile application and to further invade the user's privacy by linking sensed data with the user's identity. To address this issue, we have devised a special anonymous authentication scheme where the authentication request algorithm can be obfuscated into an unintelligible form and thus the authentication key is not explicitly used. This scheme not only achieves authenticity and unlinkability for participants, but also resists impersonation, replay, denial-of-service, man-in-the-middle, collusion, and insider attacks. The scheme's obfuscation algorithm is the first obfuscator for anonymous authentication, and it satisfies the average-case secure virtual black-box property. The scheme also supports batch verification of authentication requests for improving efficiency. Performance evaluations on a workstation and smart phones have indicated that our scheme works efficiently on various devices.

2020-08-03
Shu-fen, NIU, Bo-bin, WANG, You-chen, WANG, Jin-feng, WANG, Jing-min, CHEN.  2019.  Efficient and Secure Proxy re-signature Message Authentication Scheme in Vehicular Ad Hoc Network. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). :1652–1656.

In order to solve privacy protection problem in the Internet of Vehicles environment, a message authentication scheme based on proxy re-signature is proposed using elliptic curves, which realizes privacy protection by transforming the vehicle's signature of the message into the roadside unit's signature of the same message through the trusted center. And through the trusted center traceability, to achieve the condition of privacy protection, and the use of batch verification technology, greatly improve the efficiency of authentication. It is proved that the scheme satisfies unforgeability in ECDLP hard problem in the random oracle model. The efficiency analysis shows that the scheme meets the security and efficiency requirements of the Internet of Vehicles and has certain practical significance.

2018-06-20
Zhang, L., Li, C., Li, Y., Luo, Q., Zhu, R..  2017.  Group signature based privacy protection algorithm for mobile ad hoc network. 2017 IEEE International Conference on Information and Automation (ICIA). :947–952.

Nowadays, Vehicular ad hoc Network as a special class of Mobile ad hoc Network(MANET), provides plenty of services. However, it also brings the privacy protection issues, and there are conflicts between the privacy protection and the services. In this paper, we will propose a privacy protection algorithm based on group signature including two parts, group signature based anonymous verification and batch verification. The anonymous verification is based on the network model we proposed, which can reduce the trust authority burden by dividing the roadside units into different levels, and the batch verification can reduce the time of message verification in one group. We also prove our algorithm can satisfy the demand of privacy protection. Finally, the simulation shows that the algorithm we proposed is better than the BBS on the length of the signature, time delay and packet loss rate.

2018-05-24
Ghosh, Sumit, Ruj, Sushmita.  2017.  Fast Real-Time Authentication Scheme for Smart Grids. Proceedings of the ACM Workshop on Internet of Things (IoT) Security: Issues and Innovations. :2:1–2:7.

We propose a real time authentication scheme for smart grids which improves upon existing schemes. Our scheme is useful in many situations in smart grid operations. The smart grid Control Center (CC) communicates with the sensor nodes installed in the transmission lines so as to utilize real time data for monitoring environmental conditions in order to determine optimum power transmission capacity. Again a smart grid Operation Center (OC) communicates with several Residential Area (RA) gateways (GW) that are in turn connected to the smart meters installed in the consumer premises so as to dynamically control the power supply to meet demand based on real time electricity use information. It is not only necessary to authenticate sensor nodes and other smart devices, but also protect the integrity of messages being communicated. Our scheme is based on batch signatures and are more efficient than existing schemes. Furthermore our scheme is based on stronger notion of security, whereby the batch of signatures verify only if all individual signatures are valid. The communication overhead is kept low by using short signatures for verification.

2015-04-30
Wei, Lifei, Zhu, Haojin, Cao, Zhenfu, Dong, Xiaolei, Jia, Weiwei, Chen, Yunlu, Vasilakos, Athanasios V..  2014.  Security and Privacy for Storage and Computation in Cloud Computing. Inf. Sci.. 258:371–386.

Cloud computing emerges as a new computing paradigm that aims to provide reliable, customized and quality of service guaranteed computation environments for cloud users. Applications and databases are moved to the large centralized data centers, called cloud. Due to resource virtualization, global replication and migration, the physical absence of data and machine in the cloud, the stored data in the cloud and the computation results may not be well managed and fully trusted by the cloud users. Most of the previous work on the cloud security focuses on the storage security rather than taking the computation security into consideration together. In this paper, we propose a privacy cheating discouragement and secure computation auditing protocol, or SecCloud, which is a first protocol bridging secure storage and secure computation auditing in cloud and achieving privacy cheating discouragement by designated verifier signature, batch verification and probabilistic sampling techniques. The detailed analysis is given to obtain an optimal sampling size to minimize the cost. Another major contribution of this paper is that we build a practical secure-aware cloud computing experimental environment, or SecHDFS, as a test bed to implement SecCloud. Further experimental results have demonstrated the effectiveness and efficiency of the proposed SecCloud.