Visible to the public Biblio

Filters: Keyword is data communication  [Clear All Filters]
2023-08-11
Ambedkar, B. R., Bharti, P. K., Husain, Akhtar.  2022.  Enhancing the Performance of Hash Function Using Autonomous Initial Value Proposed Secure Hash Algorithm 256. 2022 IEEE 11th International Conference on Communication Systems and Network Technologies (CSNT). :560—565.
To verify the integrity and confidentiality of data communicated through the web is a very big issue worldwide because every person wants very fast computing and secure electronic data communication via the web. The authentication of electronic data is done by hashing algorithms. Presently researchers are using one-time padding to convert variable-length input messages into a block of fixed length and also using constant initial values that are constant for any input message. So this reason we are proposing the autonomous initial value proposed secure hash algorithm-256 (AIVPSHA256) and we are enhancing the performance of the hash function by designing and compuiting its experimental results in python 3.9.5 programming language.
2023-07-14
Priya, Konangi Tejaswini, Karthick, V..  2022.  A Non Redundant Cost Effective Platform and Data Security in Cloud Computing using Improved Standalone Framework over Elliptic Curve Cryptography Algorithm. 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS). :1249–1253.
Nowadays, cloud computing has become one of the most important and easily available storage options. This paper represents providing a platform where the data redundancy and the data security is maintained. Materials and Methods: This study contains two groups, the elliptic curve cryptography is developed in group 1 with 480 samples and advanced encryption is developed in group 2 with 960 samples. The accuracy of each of the methods is compared for different sample sizes with G power value as 0.8. Result: Advanced elliptic curve cryptography algorithm provides 1.2 times better performance compared to conventional elliptic curve cryptography algorithm for various datasets. The results were obtained with a significance value of 0.447 (p\textgreater0.05). Conclusion: From the obtained results the advanced elliptic curve cryptography algorithm seems to be better than the conventional algorithm.
2023-05-19
Wejin, John S., Badejo, Joke A., Jonathan, Oluranti, Dahunsi, Folasade.  2022.  A Brief Survey on the Experimental Application of MPQUIC Protocol in Data Communication. 2022 5th Information Technology for Education and Development (ITED). :1—8.
Since its inception, the Internet has experienced tremendous speed and functionality improvements. Among these developments are innovative approaches such as the design and deployment of Internet Protocol version six (IPv6) and the continuous modification of TCP. New transport protocols like Stream Communication Transport Protocol (SCTP) and Multipath TCP (MPTCP), which can use multiple data paths, have been developed to overcome the IP-coupled challenge in TCP. However, given the difficulties of packet modifiers over the Internet that prevent the deployment of newly proposed protocols, e.g., SCTP, a UDP innovative approach with QUIC (Quick UDP Internet Connection) has been put forward as an alternative. QUIC reduces the connection establishment complexity in TCP and its variants, high security, stream multiplexing, and pluggable congestion control. Motivated by the gains and acceptability of MPTCP, Multipath QUIC has been developed to enable multipath transmission in QUIC. While several researchers have reviewed the progress of improvement and application of MPTCP, the review on MPQUIC improvement is limited. To breach the gap, this paper provides a brief survey on the practical application and progress of MPQUIC in data communication. We first review the fundamentals of multipath transport protocols. We then provide details on the design of QUIC and MPQUIC. Based on the articles reviewed, we looked at the various applications of MPQUIC, identifying the application domain, tools used, and evaluation parameters. Finally, we highlighted the open research issues and directions for further investigations.
2023-05-12
Wang, Pengbiao, Ren, Xuemei, Wang, Dengyun.  2022.  Nonlinear cyber-physical system security control under false data injection attack. 2022 41st Chinese Control Conference (CCC). :4311–4316.
We investigate the fuzzy adaptive compensation control problem for nonlinear cyber-physical system with false data injection attack over digital communication links. The fuzzy logic system is first introduced to approximate uncertain nonlinear functions. And the time-varying sliding mode surface is designed. Secondly, for the actual require-ment of data transmission, three uniform quantizers are designed to quantify system state and sliding mode surface and control input signal, respectively. Then, the adaptive fuzzy laws are designed, which can effectively compensate for FDI attack and the quantization errors. Furthermore, the system stability and the reachability of sliding surface are strictly guaranteed by using adaptive fuzzy laws. Finally, we use an example to verify the effectiveness of the method.
ISSN: 1934-1768
2023-04-28
Naik, Badavath Shravan, Tripathy, Somanath, Mohanty, Susil Kumar.  2022.  MuSigRDT: MultiSig Contract based Reliable Data Transmission in Social Internet of Vehicle. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :1763–1768.
Social Internet of Vehicle (SIoV) has emerged as one of the most promising applications for vehicle communication, which provides safe and comfortable driving experience. It reduces traffic jams and accidents, thereby saving public resources. However, the wrongly communicated messages would cause serious issues, including life threats. So it is essential to ensure the reliability of the message before acting on considering that. Existing works use cryptographic primitives like threshold authentication and ring signatures, which incurs huge computation and communication overheads, and the ring signature size grew linearly with the threshold value. Our objective is to keep the signature size constant regardless of the threshold value. This work proposes MuSigRDT, a multisignature contract based data transmission protocol using Schnorr digital signature. MuSigRDT provides incentives, to encourage the vehicles to share correct information in real-time and participate honestly in SIoV. MuSigRDT is shown to be secure under Universal Composability (UC) framework. The MuSigRDT contract is deployed on Ethereum's Rinkeby testnet.
2023-03-31
B S, Sahana Raj, Venugopalachar, Sridhar.  2022.  Traitor Tracing in Broadcast Encryption using Vector Keys. 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon). :1–5.
Secured data transmission between one to many authorized users is achieved through Broadcast Encryption (BE). In BE, the source transmits encrypted data to multiple registered users who already have their decrypting keys. The Untrustworthy users, known as Traitors, can give out their secret keys to a hacker to form a pirate decoding system to decrypt the original message on the sly. The process of detecting the traitors is known as Traitor Tracing in cryptography. This paper presents a new Black Box Tracing method that is fully collusion resistant and it is designated as Traitor Tracing in Broadcast Encryption using Vector Keys (TTBE-VK). The proposed method uses integer vectors in the finite field Zp as encryption/decryption/tracing keys, reducing the computational cost compared to the existing methods.
2023-01-06
Wang, Yingjue, Gong, Lei, Zhang, Min.  2022.  Remote Disaster Recovery and Backup of Rehabilitation Medical Archives Information System Construction under the Background of Big Data. 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS). :575—578.
Realize the same-city and remote disaster recovery of the infectious disease network direct reporting system of the China Medical Archives Information Center. Method: A three-tier B/S/DBMS architecture is used in the disaster recovery center to deploy an infectious disease network direct reporting system, and realize data-level disaster recovery through remote replication technology; realize application-level disaster recovery of key business systems through asynchronous data technology; through asynchronous the mode carries on the network direct report system disaster tolerance data transmission of medical files. The establishment of disaster recovery centers in different cities in the same city ensures the direct reporting system and data security of infectious diseases, and ensures the effective progress of continuity work. The results show that the efficiency of remote disaster recovery and backup based on big data has increased by 9.2%
2022-11-25
Tadeo, Diego Antonio García, John, S.Franklin, Bhaumik, Ankan, Neware, Rahul, Yamsani, Nagendar, Kapila, Dhiraj.  2021.  Empirical Analysis of Security Enabled Cloud Computing Strategy Using Artificial Intelligence. 2021 International Conference on Computing Sciences (ICCS). :83—85.
Cloud Computing (CC) has emerged as an on-demand accessible tool in different practical applications such as digital industry, academics, manufacturing, health sector and others. In this paper different security threats faced by CC are discussed with suitable examples. Moreover, an artificial intelligence based security enabled CC is also discussed based on suitable empirical data. It is found that an artificial neural network (ANN) is an effective system to detect the level of risk factors associated with CC along with mitigating those risk issues with appropriate algorithms. Hence, it provides a desired level of protection against cyber attacks, internal confidential threats and external threat of data theft from a cloud computing system. Levenberg–Marquardt (LMBP) algorithms are also found as a significant tool to estimate the level of security performance around a cloud computing system. ANN is used to improve the performance level of data security across a cloud computing network and make it security enabled to ensure a protected data transmission to clients associated with the system.
2022-10-06
Djurayev, Rustam, Djabbarov, Shukhrat, Matkurbonov, Dilshod, Khasanov, Orifjon.  2021.  Approaches and Methods for Assessing the Information Security of Data Transmission Networks. 2021 International Conference on Information Science and Communications Technologies (ICISCT). :1–4.
The report examines approaches to assessing the information security of data transmission networks (DTN). The analysis of methods for quantitative assessment of information security risks is carried out. A methodological approach to the assessment of IS DTN based on the risk-oriented method is presented. A method for assessing risks based on the mathematical apparatus of the queening systems (QS) is considered and the problem of mathematical modeling is solved.
2022-07-14
Sadkhan, Sattar B., Abbas, Rana.  2021.  The Role of Quantum and Post-Quantum Techniques in Wireless Network Security - Status, Challenges and Future Trends. 2021 4th International Iraqi Conference on Engineering Technology and Their Applications (IICETA). :296—302.
One of the most essential ways of communication is the wireless network. As a result, ensuring the security of information transmitted across wireless networks is a critical concern. For wireless networks, classical cryptography provides conditional security with several loopholes, but quantum cryptography claims to be unconditionally safe. People began to consider beyond classical cryptosystems for protecting future electronic communication when quantum computers became functional. With all of these flaws in classical cryptosystems in mind, people began to consider beyond it for protecting future electronic communication. Quantum cryptography addresses practically all flaws in traditional cryptography.
2022-06-30
Fang, Xi, Zhou, Yang, Xiao, Ling, Zhao, Cheng, Yu, Zifang.  2021.  Security Enhancement for CO-OFDM/OQAM System using Twice Chaotic Encryption Scheme. 2021 Asia Communications and Photonics Conference (ACP). :1—3.
In this paper, we propose a twice chaotic encryption scheme to improve the security of CO-OFDM/OQAM system. Simulation results show that the proposed scheme enhance the physical-layer security within the acceptable performance penalty.
2022-06-08
Jia, Xianfeng, Liu, Tianyu, Sun, Chunhui, Wu, Zhi.  2021.  Analysis on the Application of Cryptographic Technology in the Communication Security of Intelligent Networked Vehicles. 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE). :423–427.

Intelligent networked vehicles are rapidly developing in intelligence and networking. The communication architecture is becoming more complex, external interfaces are richer, and data types are more complex. Different from the information security of the traditional Internet of Things, the scenarios that need to be met for the security of the Internet of Vehicles are more diverse and the security needs to be more stable. Based on the security technology of traditional Internet of Things, password application is the main protection method to ensure the privacy and non-repudiation of data communication. This article mainly elaborates the application of security protection methods using password-related protection technologies in car-side scenarios and summarizes the security protection recommendations of contemporary connected vehicles in combination with the secure communication architecture of the Internet of Vehicles.

2022-05-24
Zamry, Nurfazrina Mohd, Zainal, Anazida, Rassam, Murad A..  2021.  LEACH-CR: Energy Saving Hierarchical Network Protocol Based on Low-Energy Adaptive Clustering Hierarchy for Wireless Sensor Networks. 2021 3rd International Cyber Resilience Conference (CRC). :1–6.
Wireless Sensor Network consists of hundreds to thousands of tiny sensor nodes deployed in the large field of the target phenomenon. Sensor nodes have advantages for its size, multifunctional, and inexpensive features; unfortunately, the resources are limited in terms of memory, computational, and in energy, especially. Network transmission between nodes and base station (BS) needs to be carefully designed to prolong the network life cycle. As the data transmission is energy consuming compared to data processing, designing sensor nodes into hierarchical network architecture is preferable because it can limit the network transmission. LEACH is one of the hierarchical network protocols known for simple and energy saving protocols. There are lots of modification made since LEACH was introduced for more energy efficient purposed. In this paper, hybridization of LEACH-C and LEACH-R and the modification have been presented for a more energy saving LEACH called LEACH-CR. Experimental result was compared with previous LEACH variant and showed to has advantages over the existing LEACH protocols in terms of energy consumption, dead/alive nodes, and the packet sent to Base Station. The result reflects that the consideration made for residual energy to select the cluster head and proximity transmission lead to a better energy consumption in the network.
2022-05-06
Hariyale, Ashish, Thawre, Aakriti, Chandavarkar, B. R..  2021.  Mitigating unsecured data forwarding related attack of underwater sensor network. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1—5.
To improve communication underwater, the underwater sensor networks (UWSN) provide gains for many different underwater applications, like Underwater Data-centers, Aquatic Monitoring, Tsunami Monitoring Systems, Aquatic Monitoring, Underwater Oil Field Discovery, Submarine Target Localization, Surveilling Water Territory of the Country via UWSN, Submarine Target Localization and many more. underwater applications are dependent on secure data communication in an underwater environment, so Data transmission in Underwater Sensor Network is a need of the future. Underwater data transmission itself is a big challenge due to various limitations of underwater communication mediums like lower bandwidth, multipath effect, path loss, propagation delay, noise, Doppler spread, and so on. These challenges make the underwater networks one of the most vulnerable networks for many different security attacks like sinkhole, spoofing, wormhole, misdirection, etc. It causes packets unable to be delivered to the destination, and even worse forward them to malicious nodes. A compromised node, which may be a router, intercepts packets going through it, and selectively drops them or can perform some malicious activity. This paper presents a solution to Mitigate unsecured data forwarding related attacks of an underwater sensor network, our solution uses a pre-shared key to secure communication and hashing algorithm to maintain the integrity of stored locations at head node and demonstration of attack and its mitigation done on Unetstack software.
2022-04-19
Fionov, Andrey, Klevtsov, Alexandr.  2021.  Eliminating Broadband Covert Channels in DSA-Like Signatures. 2021 XVII International Symposium "Problems of Redundancy in Information and Control Systems" (REDUNDANCY). :45–48.
The Digital Signature Algorithm (DSA) is a representative of a family of digital signature algorithms that are known to have a number of subliminal channels for covert data transmission. The capacity of these channels stretches from several bits (narrowband channels) to about 256 or so bits (a broadband channel). There are a couple of methods described in the literature to prevent the usage of the broadband channel with the help of a warden. In the present paper, we discuss some weaknesses of the known methods and suggest a solution that is free of the weaknesses and eliminates the broadband covert channel. Our solution also requires a warden who does not participate in signature generation and is able to check any signed message for the absence of the covert communication.
S, Srinitha., S, Niveda., S, Rangeetha., V, Kiruthika..  2021.  A High Speed Montgomery Multiplier Used in Security Applications. 2021 3rd International Conference on Signal Processing and Communication (ICPSC). :299–303.

Security plays a major role in data transmission and reception. Providing high security is indispensable in communication systems. The RSA (Rivest-Shamir-Adleman) cryptosystem is used widely in cryptographic applications as it offers highly secured transmission. RSA cryptosystem uses Montgomery multipliers and it involves modular exponentiation process which is attained by performing repeated modular-multiplications. This leads to high latency and owing to improve the speed of multiplier, highly efficient modular multiplication methodology needs to be applied. In the conventional methodology, Carry Save Adder (CSA) is used in the multiplication and it consumes more area and it has larger delay, but in the suggested methodology, the Reverse Carry Propagate (RCP) adder is used in the place of CSA adder and the obtained output shows promising results in terms of area and latency. The simulation is done with Xilinx ISE design suite. The proposed multiplier can be used effectively in signal processing, image processing and security based applications.

2022-04-13
Kumar, Shubham, Chandavarkar, B.R..  2021.  DDOS prevention in IoT. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1—6.
Connecting anything to the Internet is one of the main objectives of the Internet of Things (IoT). It enabled to access any device from anywhere at any time without any human intervention. There are endless applications of IoT involving controlling home applications to industry. This rapid growth of this technology and innovations of its application results due to improved technology of developing these tiny devices with its back-end software. On the other side, internal resources such as memory, processing power, battery life are the significant constraints of these devices. Introducing lightweight cryptography helped secure data transmission across various devices while protecting these devices from getting attacked for DDoS attack is still a significant concern. This paper primarily focuses on elaborating on DDoS attack and the malware used to initiate a DDoS attack on IoT devices. Further, this paper mainly focuses on providing solutions that would help to prevent DDoS attack from IoT network.
2022-02-25
Zhang, ZhiShuo, Zhang, Wei, Qin, Zhiguang, Hu, Sunqiang, Qian, Zhicheng, Chen, Xiang.  2021.  A Secure Channel Established by the PF-CL-AKA Protocol with Two-Way ID-based Authentication in Advance for the 5G-based Wireless Mobile Network. 2021 IEEE Asia Conference on Information Engineering (ACIE). :11–15.
The 5G technology brings the substantial improvement on the quality of services (QoS), such as higher throughput, lower latency, more stable signal and more ultra-reliable data transmission, triggering a revolution for the wireless mobile network. But in a general traffic channel in the 5G-based wireless mobile network, an attacker can detect a message transmitted over a channel, or even worse, forge or tamper with the message. Building a secure channel over the two parties is a feasible solution to this uttermost data transmission security challenge in 5G-based wireless mobile network. However, how to authentication the identities of the both parties before establishing the secure channel to fully ensure the data confidentiality and integrity during the data transmission has still been a open issue. To establish a fully secure channel, in this paper, we propose a strongly secure pairing-free certificateless authenticated key agreement (PF-CL-AKA) protocol with two-way identity-based authentication before extracting the secure session key. Our protocol is provably secure in the Lippold model, which means our protocol is still secure as long as each party of the channel has at least one uncompromised partial private term. Finally, By the theoretical analysis and simulation experiments, we can observe that our scheme is practical for the real-world applications in the 5G-based wireless mobile network.
2022-02-04
Xu, Wei, Liang, Hao, Ge, Yunhan.  2021.  Research on Data Security Protection System Based on SM Algorithm. 2021 International Conference on Information Science, Parallel and Distributed Systems (ISPDS). :79–82.
As the rapid development of information technology and networks, there have been several new challenges to data security. For security needs in the process of data transmission and storage, the data security protection mechanism based on SM algorithm is studied. In addition, data cryptographic security protection system model composed of cryptographic infrastructure, cryptographic service nodes and cryptographic modules is proposed. As the core of the mechanism, SM algorithm not only brings about efficient data encryption and decryption, but ensures the security, integrity and non-repudiation of data transmission and storage. Secure and controllable key management is implemented by this model, which provides easy-to-expandable cryptographic services, and brings efficient cryptographic capabilities applicable for multiple scenarios.
2021-09-21
Narayana, V.Lakshman, Midhunchakkaravarthy, Divya.  2020.  A Time Interval Based Blockchain Model for Detection of Malicious Nodes in MANET Using Network Block Monitoring Node. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :852–857.
Mobile Ad Hoc Networks (MANETs) are infrastructure-less networks that are mainly used for establishing communication during the situation where wired network fails. Security related information collection is a fundamental part of the identification of attacks in Mobile Ad Hoc Networks (MANETs). A node should find accessible routes to remaining nodes for information assortment and gather security related information during route discovery for choosing secured routes. During data communication, malicious nodes enter the network and cause disturbances during data transmission and reduce the performance of the system. In this manuscript, a Time Interval Based Blockchain Model (TIBBM) for security related information assortment that identifies malicious nodes in the MANET is proposed. The proposed model builds the Blockchain information structure which is utilized to distinguish malicious nodes at specified time intervals. To perform a malicious node identification process, a Network Block Monitoring Node (NBMN) is selected after route selection and this node will monitor the blocks created by the nodes in the routing table. At long last, NBMN node understands the location of malicious nodes by utilizing the Blocks created. The proposed model is compared with the traditional malicious node identification model and the results show that the proposed model exhibits better performance in malicious node detection.
2021-09-16
Shen, Jian, Gui, Ziyuan, Chen, Xiaofeng, Zhang, Jun, Xiang, Yang.  2020.  Lightweight and Certificateless Multi-Receiver Secure Data Transmission Protocol for Wireless Body Area Networks. IEEE Transactions on Dependable and Secure Computing. :1–1.
The rapid development of low-power integrated circuits, wireless communication, intelligent sensors and microelectronics has allowed the realization of wireless body area networks (WBANs), which can monitor patients' vital body parameters remotely in real time to offer timely treatment. These vital body parameters are related to patients' life and health; and these highly private data are subject to many security threats. To guarantee privacy, many secure communication protocols have been proposed. However, most of these protocols have a one-to-one structure in extra-body communication and cannot support multidisciplinary team (MDT). Hence, we propose a lightweight and certificateless multi-receiver secure data transmission protocol for WBANs to support MDT treatment in this paper. In particular, a novel multi-receiver certificateless generalized signcryption (MR-CLGSC) scheme is proposed that can adaptively use only one algorithm to implement one of three cryptographic primitives: signature, encryption or signcryption. Then, a multi-receiver secure data transmission protocol based on the MR-CLGSC scheme with many security properties, such as data integrity and confidentiality, non-repudiation, anonymity, forward and backward secrecy, unlinkability and data freshness, is designed. Both security analysis and performance analysis show that the proposed protocol for WBANs is secure, efficient and highly practical.
2021-08-31
Tang, Zefan, Qin, Yanyuan, Jiang, Zimin, Krawec, Walter O., Zhang, Peng.  2020.  Quantum-Secure Networked Microgrids. 2020 IEEE Power Energy Society General Meeting (PESGM). :1—5.
The classical key distribution systems used for data transmission in networked microgrids (NMGs) rely on mathematical assumptions, which however can be broken by attacks from quantum computers. This paper addresses this quantum-era challenge by using quantum key distribution (QKD). Specifically, the novelty of this paper includes 1) a QKD-enabled communication architecture it devises for NMGs, 2) a real-time QKD- enabled NMGs testbed it builds in an RTDS environment, and 3) a novel two-level key pool sharing (TLKPS) strategy it designs to improve the system resilience against cyberattacks. Test results validate the effectiveness of the presented strategy, and provide insightful resources for building quantum-secure NMGs.
2021-06-28
Chen, Yi-Fan, Huang, Ding-Hsiang, Huang, Cheng-Fu, Lin, Yi-Kuei.  2020.  Reliability Evaluation for a Cloud Computer Network with Fog Computing. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :682–683.
The most recent and important developments in the field of computer networks are cloud and fog computing. In this study, modern cloud computer networks comprising computers, internet of things (IoT), fog servers, and cloud servers for data transmission, is investigated. A cloud computer networks can be modeled as a network with nodes and arcs, in which each arc represents a transmission line, and each node represents an IoT device, a fog server, or a cloud server. Each transmission line has several possible capacities and is regarded as a multistate. The network is termed a multi-state cloud computer network (MCCN). this study firstly constructs the mathematic model to elucidate the flow relationship among the IoT devices, edge servers, and cloud servers and subsequently develop an algorithm to evaluate the performance of the MCCN by calculating network reliability which is defined as the probability of the data being successfully processed by the MCCN.
2021-03-09
Fiade, A., Triadi, A. Yudha, Sulhi, A., Masruroh, S. Ummi, Handayani, V., Suseno, H. Bayu.  2020.  Performance Analysis of Black Hole Attack and Flooding Attack AODV Routing Protocol on VANET (Vehicular Ad-Hoc Network). 2020 8th International Conference on Cyber and IT Service Management (CITSM). :1–5.
Wireless technology is widely used today and is growing rapidly. One of the wireless technologies is VANET where the network can communicate with vehicles (V2V) which can prevent accidents on the road. Energy is also a problem in VANET so it needs to be used efficiently. The presence of malicious nodes or nodes can eliminate and disrupt the process of data communication. The routing protocol used in this study is AODV. The purpose of this study is to analyze the comparison of blackhole attack and flooding attack against energy-efficient AODV on VANET. This research uses simulation methods and several supporting programs such as OpenStreetMap, SUMO, NS2, NAM, and AWK to test the AODV routing protocol. Quality of service (QOS) parameters used in this study are throughput, packet loss, and end to end delay. Energy parameters are also used to examine the energy efficiency used. This study uses the number of variations of nodes consisting of 20 nodes, 40 nodes, 60 nodes, and different network conditions, namely normal network conditions, network conditions with black hole attacks, and network conditions with flooding attacks. The results obtained can be concluded that the highest value of throughput when network conditions are normal, the greatest value of packet loss when there is a black hole attack, the highest end to end delay value and the largest remaining energy when there is a flooding attack.
2021-02-15
Reshma, S., Shaila, K., Venugopal, K. R..  2020.  DEAVD - Data Encryption and Aggregation using Voronoi Diagram for Wireless Sensor Networks. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :635–638.
Wireless Sensor Networks (WSNs) are applied in environmental monitoring, military surveillance, etc., whereas these applications focuses on providing security for sensed data and the nodes are available for a long time. Hence, we propose DEAVD protocol for secure data exchange with limited usage of energy. The DEAVD protocol compresses data to reduces the energy consumption and implements an energy efficient encryption and decryption technique using voronoi diagram paradigm. Thus, there is an improvement in the proposed protocol with respect to security due to the concept adapted during data encryption and aggregation.