Biblio
With the rapid development of DC transmission technology and High Voltage Direct Current (HVDC) programs, the reliability of AC/DC hybrid power grid draws more and more attentions. The paper takes both the system static and dynamic characteristics into account, and proposes a novel AC/DC hybrid system reliability evaluation method considering transient security constraints based on Monte-Carlo method and transient stability analytical method. The interaction of AC system and DC system after fault is considered in evaluation process. The transient stability analysis is performed firstly when fault occurs in the system and BPA software is applied to the analysis to improve the computational accuracy and speed. Then the new system state is generated according to the transient analysis results. Then a minimum load shedding model of AC/DC hybrid system with HVDC is proposed. And then adequacy analysis is taken to the new state. The proposed method can evaluate the reliability of AC/DC hybrid grid more comprehensively and reduce the complexity of problem which is tested by IEEE-RTS 96 system and an actual large-scale system.
This paper presents a new approach for a dynamic curtailment method for renewable energy sources that guarantees fulfilling of (n-1)-security criteria of the system. Therefore, it is applicable to high voltage distribution grids and has compliance to their planning guidelines. The proposed dynamic curtailment method specifically reduces the power feed-in of renewable energy sources up to a level, where no thermal constraint is exceeded in the (n-1)-state of the system. Based on AC distribution factors, a new formulation of line outage distribution factors is presented that is applicable for outages consisting of a single line or multiple segment lines. The proposed method is tested using a planning study of a real German high voltage distribution grid. The results show that any thermal loading limits are exceeded by using the dynamic curtailment approach. Therefore, a significant reduction of the grid reinforcement can be achieved by using a small amount of curtailed annual energy from renewable energy sources.
the terms Smart grid, IntelliGrid, and secure astute grid are being used today to describe technologies that automatically and expeditiously (separate far from others) faults, renovate potency, monitor demand, and maintain and recuperate (firm and steady nature/lasting nature/vigor) for more reliable generation, transmission, and distribution of electric potency. In general, the terms describe the utilization of microprocessor-predicated astute electronic contrivances (IEDs) communicating with one another to consummate tasks afore now done by humans or left undone. These IEDs watch/ notice/ celebrate/ comply with the state of the puissance system, make edified decisions, and then take action to preserve the (firm and steady nature/lasting nature/vigor) and performance of the grid. Technology use/military accommodation in the home will sanction end users to manage their consumption predicated on their own predilections. In order to manage their consumption or the injuctive authorization placed on the grid, people (who utilize a product or accommodation) need information and an (able to transmute and get better) power distribution system. The astute grid is an accumulation of information sources and the automatic control system that manages the distribution of puissance, understands the transmutations in demand, and reacts to it by managing demand replication. Different billing (prosperity plans/ways of reaching goals) for mutable time and type of avail, as well as conservation and use or sale of distributed utilizable things/valuable supplies, will become part of perspicacious solutions. The traditional electrical power grid is currently evolving into the perspicacious grid. Perspicacious grid integrates the traditional electrical power grid with information and communication technologies (ICT). Such integration empowers the electrical utilities providers and consumers, amends the efficiency and the availability of the puissance system while perpetually monitoring, - ontrolling and managing the authoritative ordinances of customers. A keenly intellective grid is an astronomically immense intricate network composed of millions of contrivances and entities connected with each other. Such a massive network comes with many security concerns and susceptibilities. In this paper, we survey the latest on keenly intellective grid security. We highlight the involution of the keenly intellective grid network and discuss the susceptibilities concrete to this sizably voluminous heterogeneous network. We discuss then the challenges that subsist in securing the keenly intellective grid network and how the current security solutions applied for IT networks are not adequate to secure astute grid networks. We conclude by over viewing the current and needed security solutions for the keenly intellective gird.
Distribution system security region (DSSR) has been widely used to analyze the distribution system operation security. This paper innovatively defines the scale of DSSR, namely the number of boundary constraints and variables of all operational constraints, analyzes and puts forward the corresponding evaluation method. Firstly, the influence of the number of security boundary constraints and variables on the scale of DSSR is analyzed. The factors that mainly influence the scale are found, such as the number of transformers, feeders, as well as sectionalizing switches, and feeder contacts modes between transformers. Secondly, a matrix representing the relations among transformers in distribution system is defined to reflect the characteristics of network's structure, while an algorithm of the scale of DSSR based on transformers connection relationship matrix is proposed, which avoids the trouble of listing security region constraints. Finally, the proposed method is applied in a test system to confirm the effectiveness of the concepts and methods. It provides the necessary foundation for DSSR theory as well as safety analysis.
With the development of smart grid, information and energy integrate deeply. For remote monitoring and cluster management, SCADA system of wind farm should be connected to Internet. However, communication security and operation risk put forward a challenge to data network of the wind farm. To address this problem, an active security defense strategy combined whitelist and security situation assessment is proposed. Firstly, the whitelist is designed by analyzing the legitimate packet of Modbus on communication of SCADA servers and PLCs. Then Knowledge Automation is applied to establish the Decision Requirements Diagram (DRD) for wind farm security. The D-S evidence theory is adopted to assess operation situation of wind farm and it together with whitelist offer the security decision for wind turbine. This strategy helps to eliminate the wind farm owners' security concerns of data networking, and improves the integrity of the cyber security defense for wind farm.
One of the key objectives of distributed denial of service (DDoS) attack on the smart grid advanced metering infrastructure is to threaten the availability of end user's metering data. This will surely disrupt the smooth operations of the grid and third party operators who need this data for billing and other grid control purposes. In previous work, we proposed a cloud-based Openflow firewall for mitigation against DDoS attack in a smart grid AMI. In this paper, PRISM model checker is used to perform a probabilistic best-and worst-case analysis of the firewall with regard to DDoS attack success under different firewall detection probabilities ranging from zero to 1. The results from this quantitative analysis can be useful in determining the extent the DDoS attack can undermine the correctness and performance of the firewall. In addition, the study can also be helpful in knowing the extent the firewall can be improved by applying the knowledge derived from the worst-case performance of the firewall.
There has been a growing spate of Cyber attacks targeted at different corporate enterprises and systems across the globe. The scope of these attacks spans from small scale (grid and control system manipulation, domestic meter cyber hacking etc) to large scale distributed denial of service attacks (DDoSA) in enterprise networks. The effect of hacking on control systems through distributed control systems (DCS) using communication protocols on vulnerable home area networks (HANs) and neighborhood area networks (NANs) is terrifying. To meet the current security requirements, a new security network is proposed called Smart grid convoluted network (SGCN). With SGCN, the basic activities of data processing, monitoring and query requests are implemented outside the grid using Fog computing layer-3 devices (gatekeepers). A cyber monitor agent that leverages a reliable end-to end-communication network to secure the systems components on the grid is employed. Cyber attacks which affects the computational requirements of SG applications is mitigated by using a Fourier predictive cyber monitor (FPCM). The network uses flexible resources with loopback services shared across the network. Serial parallelism and efficient bandwidth provisioning are used by the locally supported Fog nodes within the SG cloud space. For services differentiation, SGCN employed secure communication between its various micro-grids as well as its metering front-ends. With the simulated traffic payload extraction trend (STPET), SGCN promises hard time for hackers and malicious malwares. While the work guarantees security for SGs, reliability is still an open issue due to the complexity of SG architecture. In conclusion, the future of the Cyber security in SGs must employ the concept of Internet of Everything (IoE), Malware predictive analytics and Fog layers on existing SG prototypes for optimal security benefits.
In the last years, networking scenarios have been evolving, hand-in-hand with new and varied applications with heterogeneous Quality of Service (QoS) requirements. These requirements must be efficiently and effectively delivered. Given its static layered structure and almost complete lack of built-in QoS support, the current TCP/IP-based Internet hinders such an evolution. In contrast, the clean-slate Recursive InterNetwork Architecture (RINA) proposes a new recursive and programmable networking model capable of evolving with the network requirements, solving in this way most, if not all, TCP/IP protocol stack limitations. Network providers can better deliver communication services across their networks by taking advantage of the RINA architecture and its support for QoS. This support allows providing complete information of the QoS needs of the supported traffic flows, and thus, fulfilment of these needs becomes possible. In this work, we focus on the importance of path selection to better ensure QoS guarantees in long-haul RINA networks. We propose and evaluate a programmable strategy for path selection based on flow QoS parameters, such as the maximum allowed latency and packet losses, comparing its performance against simple shortest-path, fastest-path and connection-oriented solutions.
While research on Information-Centric Networking (ICN) flourishes, its adoption seems to be an elusive goal. In this paper we propose Edge-ICN: a novel approach for deploying ICN in a single large network, such as the network of an Internet Service Provider. Although Edge-ICN requires nothing beyond an SDN-based network supporting the OpenFlow protocol, with ICN-aware nodes only at the edges of the network, it still offers the same benefits as a clean-slate ICN architecture but without the deployment hassles. Moreover, by proxying legacy traffic and transparently forwarding it through the Edge-ICN nodes, all existing applications can operate smoothly, while offering significant advantages to applications such as native support for scalable anycast, multicast, and multi-source forwarding. In this context, we show how the proposed functionality at the edge of the network can specifically benefit CoAP-based IoT applications. Our measurements show that Edge-ICN induces on average the same control plane overhead for name resolution as a centralized approach, while also enabling IoT applications to build on anycast, multicast, and multi-source forwarding primitives.
Ideally, minimizing the flow completion time (FCT) requires millions of priorities supported by the underlying network so that each flow has its unique priority. However, in production datacenters, the available switch priority queues for flow scheduling are very limited (merely 2 or 3). This practical constraint seriously degrades the performance of previous approaches. In this paper, we introduce Explicit Priority Notification (EPN), a novel scheduling mechanism which emulates fine-grained priorities (i.e., desired priorities or DP) using only two switch priority queues. EPN can support various flow scheduling disciplines with or without flow size information. We have implemented EPN on commodity switches and evaluated its performance with both testbed experiments and extensive simulations. Our results show that, with flow size information, EPN achieves comparable FCT as pFabric that requires clean-slate switch hardware. And EPN also outperforms TCP by up to 60.5% if it bins the traffic into two priority queues according to flow size. In information-agnostic setting, EPN outperforms PIAS with two priority queues by up to 37.7%. To the best of our knowledge, EPN is the first system that provides millions of priorities for flow scheduling with commodity switches.
Clean slate design of computing system is an emerging topic for continuing growth of warehouse-scale computers. A famous custom design is rackscale (RS) computing by considering a single rack as a computer that consists of a number of processors, storages and accelerators customized to a target application. In RS, each user is expected to occupy a single or more than one rack. However, new users frequently appear and the users often change their application scales and parameters that would require different numbers of processors, storages and accelerators in a rack. The reconfiguration of interconnection networks on their components is potentially needed to support the above demand in RS. In this context, we propose the inter-rackscale (IRS) architecture that disaggregates various hardware resources into different racks according to their own areas. The heart of IRS is to use free-space optics (FSO) for tightly-coupled connections between processors, storages and GPUs distributed in different racks, by swapping endpoints of FSO links to change network topologies. Through a large IRS system simulation, we show that by utilizing FSO links for interconnection between racks, the FSO-equipped IRS architecture can provide comparable communication latency between heterogeneous resources to that of the counterpart RS architecture. A utilization of 3 FSO terminals per rack can improve at least 87.34% of inter-CPU/SSD(GPU) communication over Fat-tree and improve at least 92.18% of that over 2-D Torus. We verify the advantages of IRS over RS in job scheduling performance.
While the clean slate approach proposed by Software Defined Networking (SDN) promises radical changes in the stagnant state of network management, SDN innovation has not gone beyond the intra-domain level. For the inter-domain ecosystem to benefit from the advantages of SDN, Internet Exchange Points (IXPs) are the ideal place: a central interconnection hub through which a large share of the Internet can be affected. In this demo, we showcase the ENDEAVOUR platform: a new software defined exchange approach readily deployable in commercial IXPs. We demonstrate here our implementations of traffic engineering and Distributed Denial of Service mitigation, as well as how member networks cash in on the advanced SDN-features of ENDEAVOUR, typically not available in legacy networks.
Tactical networks are generally simple ad-hoc networks in design, however, this simple design often gets complicated, when heterogeneous wireless technologies have to work together to enable seamless multi-hop communications across multiple sessions. In recent years, there has been some significant advances in computational, radio, localization, and networking te, and session's rate i.e., aggregate capacity averaged over a 4-time-slot frame)chnologies, which motivate a clean slate design of the control plane for multi-hop tactical wireless networks. In this paper, we develop a global network optimization framework, which characterizes the control plane for multi-hop wireless tactical networks. This framework abstracts the underlying complexity of tactical wireless networks and orchestrates the the control plane functions. Specifically, we develop a cross-layer optimization framework, which characterizes the interaction between the physical, link, and network layers. By applying the framework to a throughput maximization problem, we show how the proposed framework can be utilized to solve a broad range of wireless multi-hop tactical networking problems.
Named Data Networking (NDN) is one of the future internet architectures, which is a clean-slate approach. NDN provides intelligent data retrieval using the principles of name-based symmetrical forwarding of Interest/Data packets and innetwork caching. The continually increasing demand for rapid dissemination of large-scale scientific data is driving the use of NDN in data-intensive science experiments. In this paper, we establish an intercontinental NDN testbed. In the testbed, an NDN-based application that targets climate science as an example data intensive science application is designed and implemented, which has differentiated features compared to those of previous studies. We verify experimental justification of using NDN for climate science in the intercontinental network, through performance comparisons between classical delivery techniques and NDN-based climate data delivery.
Named Data Networks provide a clean-slate redesign of the Future Internet for efficient content distribution. Because Internet of Things are expected to compose a significant part of Future Internet, most content will be managed by constrained devices. Such devices are often equipped with limited CPU, memory, bandwidth, and energy supply. However, the current Named Data Networks design neglects the specific requirements of Internet of Things scenarios and many data structures need to be further optimized. The purpose of this research is to provide an efficient strategy to route in Named Data Networks by constructing a Forwarding Information Base using Iterated Bloom Filters defined as I(FIB)F. We propose the use of content names based on iterative hashes. This strategy leads to reduce the overhead of packets. Moreover, the memory and the complexity required in the forwarding strategy are lower than in current solutions. We compare our proposal with solutions based on hierarchical names and Standard Bloom Filters. We show how to further optimize I(FIB)F by exploiting the structure information contained in hierarchical content names. Finally, two strategies may be followed to reduce: (i) the overall memory for routing or (ii) the probability of false positives.
The Named-Data Networking (NDN) has emerged as a clean-slate Internet proposal on the wave of Information-Centric Networking. Although the NDN's data-plane seems to offer many advantages, e.g., native support for multicast communications and flow balance, it also makes the network infrastructure vulnerable to a specific DDoS attack, the Interest Flooding Attack (IFA). In IFAs, a botnet issuing unsatisfiable content requests can be set up effortlessly to exhaust routers' resources and cause a severe performance drop to legitimate users. So far several countermeasures have addressed this security threat, however, their efficacy was proved by means of simplistic assumptions on the attack model. Therefore, we propose a more complete attack model and design an advanced IFA. We show the efficiency of our novel attack scheme by extensively assessing some of the state-of-the-art countermeasures. Further, we release the software to perform this attack as open source tool to help design future more robust defense mechanisms.
Opportunistic Networks are delay-tolerant mobile networks with intermittent node contacts in which data is transferred with the store-carry-forward principle. Owners of smartphones and smart objects form such networks due to their social behaviour. Opportunistic Networking can be used in remote areas with no access to the Internet, to establish communication after disasters, in emergency situations or to bypass censorship, but also in parallel to familiar networking. In this work, we create a mobile network application that connects Android devices over Wi-Fi, offers identification and encryption, and gathers information for routing in the network. The network application is constructed in such a way that third party applications can use the network application as network layer to send and receive data packets. We create secure and reliable connections while maintaining a high transmission speed, and with the gathered information about the network we offer knowledge for state of the art routing protocols. We conduct tests on connectivity, transmission range and speed, battery life and encryption speed and show a proof of concept for routing in the network.
The growing popularity of Android and the increasing amount of sensitive data stored in mobile devices have lead to the dissemination of Android ransomware. Ransomware is a class of malware that makes data inaccessible by blocking access to the device or, more frequently, by encrypting the data; to recover the data, the user has to pay a ransom to the attacker. A solution for this problem is to backup the data. Although backup tools are available for Android, these tools may be compromised or blocked by the ransomware itself. This paper presents the design and implementation of RANSOMSAFEDROID, a TrustZone based backup service for mobile devices. RANSOMSAFEDROID is protected from malware by leveraging the ARM TrustZone extension and running in the secure world. It does backup of files periodically to a secure local persistent partition and pushes these backups to external storage to protect them from ransomware. Initially, RANSOMSAFEDROID does a full backup of the device filesystem, then it does incremental backups that save the changes since the last backup. As a proof-of-concept, we implemented a RANSOMSAFEDROID prototype and provide a performance evaluation using an i.MX53 development board.
Mobile apps are widely adopted in daily life, and contain increasing security flaws. Many regulatory agencies and organizations have announced security guidelines for app development. However, most security guidelines involving technicality and compliance with this requirement is not easily feasible. Thus, we propose Mobile Apps Assessment and Analysis System (MAS), an automatic security validation system to improve guideline compliance. MAS combines static and dynamic analysis techniques, which can be used to verify whether android apps meet the security guideline requirements. We implemented MAS in practice and verified 143 real-world apps produced by the Taiwan government. Besides, we also validated 15,000 popular apps collected from Google Play Store produced in three countries. We found that most apps contain at least three security issues. Finally, we summarize the results and list the most common security flaws for consideration in further app development.
Mobile attack approaches can be categorized as Application Based Attacks and Frequency Based Attacks. Application based attacks are reviewed extensively in the literature. However, frequency based attacks to mobile phones are not experimented in detail. In this work, we have experimentally succeeded to attack an Android smartphone using a simple software based radio circuit. We have developed a software “Primary Mobile Hack Builder” to control Android operated cellphone as a distance. The SMS information and pictures in the cellphone can be obtained using this device. On the other hand, after launching a software into targeting cellphone, the camera of the cellphone can be controlled for taking pictures and downloading them into our computers. It was also possible to eavesdropping the conversation.
The state-of-the-art Android malware often encrypts or encodes malicious code snippets to evade malware detection. In this paper, such undetectable codes are called Mysterious Codes. To make such codes detectable, we design a system called Droidrevealer to automatically identify Mysterious Codes and then decode or decrypt them. The prototype of Droidrevealer is implemented and evaluated with 5,600 malwares. The results show that 257 samples contain the Mysterious Codes and 11,367 items are exposed. Furthermore, several sensitive behaviors hidden in the Mysterious Codes are disclosed by Droidrevealer.
With Android application packing technology evolving, there are more and more ways to harden APPs. Manually unpacking APPs becomes more difficult as the time needed for analyzing increase exponentially. At the beginning, the packing technology is designed to prevent APPs from being easily decompiled, tampered and re-packed. But unfortunately, many malicious APPs start to use packing service to protect themselves. At present, most of the antivirus software focus on APPs that are unpacked, which means if malicious APPs apply the packing service, they can easily escape from a lot of antivirus software. Therefore, we should not only emphasize the importance of packing, but also concentrate on the unpacking technology. Only by doing this can we protect the normal APPs, and not miss any harmful APPs at the same time. In this paper, we first systematically study a lot of DEX packing and unpacking technologies, then propose and develop a universal unpacking system, named CrackDex, which is capable of extracting the original DEX file from the packed APP. We propose three core technologies: simulation execution, DEX reassembling, and DEX restoration, to get the unpacked DEX file. CrackDex is a part of the Dalvik virtual machine, and it monitors the execution of functions to locate the unpacking point in the portable interpreter, then launches the simulation execution, collects the data of original DEX file through corresponding structure pointer, finally fulfills the unpacking process by reassembling the data collected. The results of our experiments show that CrackDex can be used to effectively unpack APPs that are packed by packing service in a universal approach without any other knowledge of packing service.
For mobile phone users, short message service (SMS) is the most commonly used text-based communication type on mobile devices. Users can interact with other users and services via SMS. For example, users can send private messages, use information services, apply for a job advertisement, conduct bank transactions, and so on. Users should be very careful when using SMS. During the sending of SMS, the message content should be aware that it can be captured and act accordingly. Based on these findings, the elderly, called as “Silent Generation” which represents 70 years or older adults, are text messaging much more than they did in the past. Therefore, they need solutions which are both simple and secure enough if there is a need to send sensitive information via SMS. In this study, we propose and develop an android application to secure text messages. The application has a simple and easy-to-use graphical user interface but provides significant security.
The symmetric block ciphers, which represent a core element for building cryptographic communications systems and protocols, are used in providing message confidentiality, authentication and integrity. Various limitations in hardware and software resources, especially in terminal devices used in mobile communications, affect the selection of appropriate cryptosystem and its parameters. In this paper, an implementation of three symmetric ciphers (DES, 3DES, AES) used in different operating modes are analyzed on Android platform. The cryptosystems' performance is analyzed in different scenarios using several variable parameters: cipher, key size, plaintext size and number of threads. Also, the influence of parallelization supported by multi-core CPUs on cryptosystem performance is analyzed. Finally, some conclusions about the parameter selection for optimal efficiency are given.
The rapid growth of science and technology in the telecommunications world can come up with new ways for some people bent on abusing for threatening information security as hackers, crackers, carder, phreaker and so on. If the information is on the wrong side will result in losses. Information that must be considered is the security of confidential information. Steganography is a method that can be used to hide a message by using digital media. Digital Steganography using digital media as the container vessel such as images, sounds, text, and video. Hidden secret data can also include images, audio, text, and video. In this final audio steganography implemented. One method that can be used in steganography is the Least Significant Bit (LSB). Steganography implementation will be accompanied by the application of cryptography in the form of encryption and decryption. This method works is messages that have been encrypted beforehand will be hidden evenly on each region in MP3 or WAV already divided, with modify / change the LSB of the media container with the bits of information to be hidden. In making the steganography application, the author uses the Java programming language eclipse, because the program is quite easy and can be run in the Android smartphone operating system.