Visible to the public Biblio

Filters: Keyword is communication channel  [Clear All Filters]
2021-04-08
Ekşim, A., Demirci, T..  2020.  Ultimate Secrecy in Cooperative and Multi-hop Wireless Communications. 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science. :1–4.
In this work, communication secrecy in cooperative and multi-hop wireless communications for various radio frequencies are examined. Attenuation lines and ranges of both detection and ultimate secrecy regions were calculated for cooperative communication channel and multi-hop channel with various number of hops. From results, frequency ranges with the highest potential to apply bandwidth saving method known as frequency reuse were determined and compared to point-to-point channel. Frequencies with the highest attenuation were derived and their ranges of both detection and ultimate secrecy are calculated. Point-to-point, cooperative and multi-hop channels were compared in terms of ultimate secrecy ranges. Multi-hop channel measurements were made with different number of hops and the relation between the number of hops and communication security is examined. Ultimate secrecy ranges were calculated up to 1 Terahertz and found to be less than 13 meters between 550-565 GHz frequency range. Therefore, for short-range wireless communication systems such as indoor and in-device communication systems (board-to-board or chip-to-chip communications), it is shown that various bands in the Terahertz band can be used to reuse the same frequency in different locations to obtain high security and high bandwidth.
2020-11-23
Singh, M., Kim, S..  2018.  Crypto trust point (cTp) for secure data sharing among intelligent vehicles. 2018 International Conference on Electronics, Information, and Communication (ICEIC). :1–4.
Tremendous amount of research is going on in the field of Intelligent vehicles (IVs)in industries and academics. Although, IV supports a better convenience for the society, but it also suffers from some concerns. Security is the major concern in Intelligent vehicle technology, due to its high exposure to data and information communication. The environment of the IV communication has many security vulnerabilities, which cannot be solved by Traditional Security approaches due to their fixed capabilities. Among security, trust, data accuracy and reliability of communication data in the communication channel are the other issues in IV communication. Blockchain is a peer-to-peer, distributed and decentralized technology which is used by the digital currency Bit-coin, to build trust and reliability and it has capability and is feasible to use Blockchain in IV Communication. In this paper, we propose, Blockchain based crypto Trust point (cTp) mechanism for IV communication. Using cTp in the IVs communication environment can provide IV data security and reliability. cTp mechanism accounts for the legitimate and illegitimate vehicles behavior, and rewarding thereby building trust among the vehicles. We also propose a reward based system using cTp (exchange of some cTp among IVs, during successful communication). We use blockchain technology in the Intelligent Transportation System (ITS) for the data management of the cTp. Using ITS, cTp details of every vehicle can be accessed ubiquitously by IVs. We evaluation, our proposal using the intersection use case scenario for intelligent vehicles communication.
2020-09-28
Zhang, Shuaipeng, Liu, Hong.  2019.  Environment Aware Privacy-Preserving Authentication with Predictability for Medical Edge Computing. 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :90–96.
With the development of IoT, smart health has significantly improved the quality of people's life. A large amount of smart health monitoring system has been proposed, which provides an opportunity for timely and efficient diagnosis. Nevertheless, most of them ignored the impact of environment on patients' health. Due to the openness of the communication channel, data security and privacy preservation are crucial problems to be solved. In this work, an environment aware privacy-preserving authentication protocol based on the fuzzy extractor and elliptic curve cryptography (ecc) is designed for health monitoring system with mutual authentication and anonymity. Edge computing unit can authenticate all environmental sensors at one time. Fuzzy synthetic evaluation model is utilized to evaluate the environment equality with the patients' temporal health index (THI) as an assessment factor, which can help to predict the appropriate environment. The session key is established for secure communication based on the predicted result. Through security analysis, the proposed protocol can prevent common attacks. Moreover, performance analysis shows that the proposed protocol is applicable for resource-limited smart devices in edge computing health monitoring system.
2020-09-18
Kaji, Shugo, Kinugawa, Masahiro, Fujimoto, Daisuke, Hayashi, Yu-ichi.  2019.  Data Injection Attack Against Electronic Devices With Locally Weakened Immunity Using a Hardware Trojan. IEEE Transactions on Electromagnetic Compatibility. 61:1115—1121.
Intentional electromagnetic interference (IEMI) of information and communication devices is based on high-power electromagnetic environments far exceeding the device immunity to electromagnetic interference. IEMI dramatically alters the electromagnetic environment throughout the device by interfering with the electromagnetic waves inside the device and destroying low-tolerance integrated circuits (ICs) and other elements, thereby reducing the availability of the device. In contrast, in this study, by using a hardware Trojan (HT) that is quickly mountable by physically accessing the devices, to locally weaken the immunity of devices, and then irradiating electromagnetic waves of a specific frequency, only the attack targets are intentionally altered electromagnetically. Therefore, we propose a method that uses these electromagnetic changes to rewrite or generate data and commands handled within devices. Specifically, targeting serial communication systems used inside and outside the devices, the installation of an HT on the communication channel weakens local immunity. This shows that it is possible to generate an electrical signal representing arbitrary data on the communication channel by applying electromagnetic waves of sufficiently small output compared with the conventional IEMI and letting the IC process the data. In addition, we explore methods for countering such attacks.
2020-02-10
Midha, Sugandhi, Triptahi, Khushboo.  2019.  Extended TLS Security and Defensive Algorithm in OpenFlow SDN. 2019 9th International Conference on Cloud Computing, Data Science Engineering (Confluence). :141–146.

Software Defined Network (SDN) is a revolutionary networking paradigm which provides the flexibility of programming the network interface as per the need and demand of the user. Software Defined Network (SDN) is independent of vendor specific hardware or protocols and offers the easy extensions in the networking. A customized network as per on user demand facilitates communication control via a single entity i.e. SDN controller. Due to this SDN Controller has become more vulnerable to SDN security attacks and more specifically a single point of failure. It is worth noticing that vulnerabilities were identified because of customized applications which are semi-independent of underlying network infrastructure. No doubt, SDN has provided numerous benefits like breaking vendor lock-ins, reducing overhead cost, easy innovations, increasing programmability among devices, introducing new features and so on. But security of SDN cannot be neglected and it has become a major topic of debate. The communication channel used in SDN is OpenFlow which has made TLS implementation an optional approach in SDN. TLS adoption is important and still vulnerable. This paper focuses on making SDN OpenFlow communication more secure by following extended TLS support and defensive algorithm.

2019-09-05
Elsadig, M. A., Fadlalla, Y. A..  2018.  Packet Length Covert Channel: A Detection Scheme. 2018 1st International Conference on Computer Applications Information Security (ICCAIS). :1-7.

A covert channel is a communication channel that is subjugated for illegal flow of information in a way that violates system security policies. It is a dangerous, invisible, undetectable, and developed security attack. Recently, Packet length covert channel has motivated many researchers as it is a one of the most undetectable network covert channels. Packet length covert channel generates a covert traffic that is very similar to normal terrific which complicates the detection of such type of covert channels. This motivates us to introduce a machine learning based detection scheme. Recently, a machine learning approach has proved its capability in many different fields especially in security field as it usually brings up a reliable and realistic results. Based in our developed content and frequency-based features, the developed detection scheme has been fully trained and tested. Our detection scheme has gained an excellent degree of detection accuracy which reaches 98% (zero false negative rate and 0.02 false positive rate).

2018-01-10
Ahmed, C. M., Mathur, A. P..  2017.  Hardware Identification via Sensor Fingerprinting in a Cyber Physical System. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :517–524.

A lot of research in security of cyber physical systems focus on threat models where an attacker can spoof sensor readings by compromising the communication channel. A little focus is given to attacks on physical components. In this paper a method to detect potential attacks on physical components in a Cyber Physical System (CPS) is proposed. Physical attacks are detected through a comparison of noise pattern from sensor measurements to a reference noise pattern. If an adversary has physically modified or replaced a sensor, the proposed method issues an alert indicating that a sensor is probably compromised or is defective. A reference noise pattern is established from the sensor data using a deterministic model. This pattern is referred to as a fingerprint of the corresponding sensor. The fingerprint so derived is used as a reference to identify measured data during the operation of a CPS. Extensive experimentation with ultrasonic level sensors in a realistic water treatment testbed point to the effectiveness of the proposed fingerprinting method in detecting physical attacks.

2017-02-14
S. Pund-Dange, C. G. Desai.  2015.  "Secured data communication system using RSA with mersenne primes and Steganography". 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom). :1306-1310.

To add multiple layers of security our present work proposes a method for integrating together cryptography and Steganography for secure communication using an image file. We have used here combination of cryptography and steganography that can hide a text in an image in such a way so as to prevent any possible suspicion of having a hidden text, after RSA cipher. It offers privacy and high security through the communication channel.

2015-05-01
Bo Chai, Zaiyue Yang, Jiming Chen.  2014.  Impacts of unreliable communication and regret matching based anti-jamming approach in smart grid. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

Demand response management (DRM) is one of the main features in smart grid, which is realized via communications between power providers and consumers. Due to the vulnerabilities of communication channels, communication is not perfect in practice and will be threatened by jamming attack. In this paper, we consider jamming attack in the wireless communication for smart grid. Firstly, the DRM performance degradation introduced by unreliable communication is fully studied. Secondly, a regret matching based anti-jamming algorithm is proposed to enhance the performance of communication and DRM. Finally, numerical results are presented to illustrate the impacts of unreliable communication on DRM and the performance of the proposed anti-jamming algorithm.