Biblio
This paper presents a secure reinforcement learning (RL) based control method for unknown linear time-invariant cyber-physical systems (CPSs) that are subjected to compositional attacks such as eavesdropping and covert attack. We consider the attack scenario where the attacker learns about the dynamic model during the exploration phase of the learning conducted by the designer to learn a linear quadratic regulator (LQR), and thereafter, use such information to conduct a covert attack on the dynamic system, which we refer to as doubly learning-based control and attack (DLCA) framework. We propose a dynamic camouflaging based attack-resilient reinforcement learning (ARRL) algorithm which can learn the desired optimal controller for the dynamic system, and at the same time, can inject sufficient misinformation in the estimation of system dynamics by the attacker. The algorithm is accompanied by theoretical guarantees and extensive numerical experiments on a consensus multi-agent system and on a benchmark power grid model.
This project develops techniques to protect against sensor attacks on cyber-physical systems. Specifically, a resilient version of the Kalman filtering technique accompanied with a watermarking approach is proposed to detect cyber-attacks and estimate the correct state of the system. The defense techniques are used in conjunction and validated on two case studies: i) an unmanned ground vehicle (UGV) in which an attacker alters the reference angle and ii) a Cube Satellite (CubeSat) in which an attacker modifies the orientation of the satellite degrading its performance. Based on this work, we show that the proposed techniques in conjunction achieve better resiliency and defense capability than either technique alone against spoofing and replay attacks.
Cyber-physical systems (CPS) are state-of-the-art communication environments that offer various applications with distinct requirements. However, security in CPS is a nonnegotiable concept, since without a proper security mechanism the applications of CPS may risk human lives, the privacy of individuals, and system operations. In this paper, we focus on PHY-layer security approaches in CPS to prevent passive eavesdropping attacks, and we propose an integration of physical layer operations to enhance security. Thanks to the McEliece cryptosystem, error injection is firstly applied to information bits, which are encoded with the forward error correction (FEC) schemes. Golay and Hamming codes are selected as FEC schemes to satisfy power and computational efficiency. Then obtained codewords are transmitted across reliable intermediate relays to the legitimate receiver. As a performance metric, the decoding frame error rate of the eavesdropper is analytically obtained for the fragmentary existence of significant noise between relays and Eve. The simulation results validate the analytical calculations, and the obtained results show that the number of low-quality channels and the selected FEC scheme affects the performance of the proposed model.
Software rejuvenation has been proposed as a strategy to protect cyber-physical systems (CSPs) against unanticipated and undetectable cyber attacks. The basic idea is to refresh the system periodically with a secure and trusted copy of the online software so as to eliminate all effects of malicious modifications to the run-time code and data. This paper considers software rejuvenation design from a control-theoretic perspective. Invariant sets for the Lyapunov function for the safety controller are used to derive bounds on the time that the CPS can operate in mission control mode before the software must be refreshed. With these results it can be guaranteed that the CPS will remain safe under cyber attacks against the run-time system. The approach is illustrated using simulation of the nonlinear dynamics of a quadrotor system. The concluding section discusses directions for further research.