Visible to the public Biblio

Filters: Keyword is privacy awareness  [Clear All Filters]
2020-09-28
Han, Xu, Liu, Yanheng, Wang, Jian.  2018.  Modeling and analyzing privacy-awareness social behavior network. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :7–12.
The increasingly networked human society requires that human beings have a clear understanding and control over the structure, nature and behavior of various social networks. There is a tendency towards privacy in the study of network evolutions because privacy disclosure behavior in the network has gradually developed into a serious concern. For this purpose, we extended information theory and proposed a brand-new concept about so-called “habitual privacy” to quantitatively analyze privacy exposure behavior and facilitate privacy computation. We emphasized that habitual privacy is an inherent property of the user and is correlated with their habitual behaviors. The widely approved driving force in recent modeling complex networks is originated from activity. Thus, we propose the privacy-driven model through synthetically considering the activity impact and habitual privacy underlying the decision process. Privacy-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the evolution of network driven by privacy.
2020-04-03
Fawaz, Kassem, Linden, Thomas, Harkous, Hamza.  2019.  Invited Paper: The Applications of Machine Learning in Privacy Notice and Choice. 2019 11th International Conference on Communication Systems Networks (COMSNETS). :118—124.
For more than two decades since the rise of the World Wide Web, the “Notice and Choice” framework has been the governing practice for the disclosure of online privacy practices. The emergence of new forms of user interactions, such as voice, and the enforcement of new regulations, such as the EU's recent General Data Protection Regulation (GDPR), promise to change this privacy landscape drastically. This paper discusses the challenges towards providing the privacy stakeholders with privacy awareness and control in this changing landscape. We will also present our recent research on utilizing Machine learning to analyze privacy policies and settings.
2020-02-17
Yang, Chen, Liu, Tingting, Zuo, Lulu, Hao, Zhiyong.  2019.  An Empirical Study on the Data Security and Privacy Awareness to Use Health Care Wearable Devices. 2019 16th International Conference on Service Systems and Service Management (ICSSSM). :1–6.
Recently, several health care wearable devices which can intervene in health and collect personal health data have emerged in the medical market. Although health care wearable devices promote the integration of multi-layer medical resources and bring new ways of health applications for users, it is inevitable that some problems will be brought. This is mainly manifested in the safety protection of medical and health data and the protection of user's privacy. From the users' point of view, the irrational use of medical and health data may bring psychological and physical negative effects to users. From the government's perspective, it may be sold by private businesses in the international arena and threaten national security. The most direct precaution against the problem is users' initiative. For better understanding, a research model is designed by the following five aspects: Security knowledge (SK), Security attitude (SAT), Security practice (SP), Security awareness (SAW) and Security conduct (SC). To verify the model, structural equation analysis which is an empirical approach was applied to examine the validity and all the results showed that SK, SAT, SP, SAW and SC are important factors affecting users' data security and privacy protection awareness.
2019-07-01
Ferreyra, N. E. Díaz, Meisy, R., Heiselz, M..  2018.  At Your Own Risk: Shaping Privacy Heuristics for Online Self-Disclosure. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1-10.

Revealing private and sensitive information on Social Network Sites (SNSs) like Facebook is a common practice which sometimes results in unwanted incidents for the users. One approach for helping users to avoid regrettable scenarios is through awareness mechanisms which inform a priori about the potential privacy risks of a self-disclosure act. Privacy heuristics are instruments which describe recurrent regrettable scenarios and can support the generation of privacy awareness. One important component of a heuristic is the group of people who should not access specific private information under a certain privacy risk. However, specifying an exhaustive list of unwanted recipients for a given regrettable scenario can be a tedious task which necessarily demands the user's intervention. In this paper, we introduce an approach based on decision trees to instantiate the audience component of privacy heuristics with minor intervention from the users. We introduce Disclosure- Acceptance Trees, a data structure representative of the audience component of a heuristic and describe a method for their generation out of user-centred privacy preferences.

2019-01-21
Han, Xu, Tian, Daxin, Duan, Xuting, Sheng, Zhengguo, Wang, Yunpeng, Leung, Victor C.M..  2018.  Optimized Anonymity Updating in VANET Based on Information and Privacy Joint Metrics. Proceedings of the 8th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications. :63–69.
With the continuous development of the vehicular ad hoc network (VANET), many challenges related to network security have come one after another, among which privacy issues are particularly prominent. To help each network user decide when and where to protect their privacy, we suggest creating a user-centric privacy computing system in VANET. A risk assessment function and a set of decision weights are proposed to simulate the driver's decision-making intent in the vehicle network. Besides, proposed information and privacy joint metrics are used as the key indicators for dynamic selection of Mix-zone. Finally, by considering three influencing factors: maximum road capacity, user-centric quantitative privacy and attacker information measurement, defined mixzone creation mechanism to achieve privacy protection in VANET.