Visible to the public Biblio

Found 599 results

Filters: Keyword is cyber physical systems  [Clear All Filters]
2020-01-07
Nateghizad, Majid, Veugen, Thijs, Erkin, Zekeriya, Lagendijk, Reginald L..  2018.  Secure Equality Testing Protocols in the Two-Party Setting. Proceedings of the 13th International Conference on Availability, Reliability and Security. :3:1-3:10.

Protocols for securely testing the equality of two encrypted integers are common building blocks for a number of proposals in the literature that aim for privacy preservation. Being used repeatedly in many cryptographic protocols, designing efficient equality testing protocols is important in terms of computation and communication overhead. In this work, we consider a scenario with two parties where party A has two integers encrypted using an additively homomorphic scheme and party B has the decryption key. Party A would like to obtain an encrypted bit that shows whether the integers are equal or not but nothing more. We propose three secure equality testing protocols, which are more efficient in terms of communication, computation or both compared to the existing work. To support our claims, we present experimental results, which show that our protocols achieve up to 99% computation-wise improvement compared to the state-of-the-art protocols in a fair experimental set-up.

2019-12-30
Kubo, Ryogo.  2018.  Detection and Mitigation of False Data Injection Attacks for Secure Interactive Networked Control Systems. 2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR). :7-12.

Cybersecurity in control systems has been actively discussed in recent years. In particular, networked control systems (NCSs) over the Internet are exposed to various types of cyberattacks such as false data injection attacks. This paper proposes a detection and mitigation method of the false data injection attacks in interactive NCSs, i.e., bilateral teleoperation systems. A bilateral teleoperation system exchanges position and force information through the Internet between the master and slave robots. The proposed method utilizes two redundant communication channels for both the master-to-slave and slave-to-master paths. The attacks are detected by a tamper detection observer (TDO) on each of the master and slave sides. The TDO compares the position responses of actual robots and robot models. A path selector on each side chooses the appropriate position and force responses from the responses received through the two communication channels, based on the outputs of the TDO. The proposed method is validated by simulations with attack models.

Iqbal, Maryam, Iqbal, Mohammad Ayman.  2019.  Attacks Due to False Data Injection in Smart Grids: Detection Protection. 2019 1st Global Power, Energy and Communication Conference (GPECOM). :451-455.

As opposed to a traditional power grid, a smart grid can help utilities to save energy and therefore reduce the cost of operation. It also increases reliability of the system In smart grids the quality of monitoring and control can be adequately improved by incorporating computing and intelligent communication knowledge. However, this exposes the system to false data injection (FDI) attacks and the system becomes vulnerable to intrusions. Therefore, it is important to detect such false data injection attacks and provide an algorithm for the protection of system against such attacks. In this paper a comparison between three FDI detection methods has been made. An H2 control method has then been proposed to detect and control the false data injection on a 12th order model of a smart grid. Disturbances and uncertainties were added to the system and the results show the system to be fully controllable. This paper shows the implementation of a feedback controller to fully detect and mitigate the false data injection attacks. The controller can be incorporated in real life smart grid operations.

Zhang, Jiangfan.  2019.  Quickest Detection of Time-Varying False Data Injection Attacks in Dynamic Smart Grids. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2432-2436.

Quickest detection of false data injection attacks (FDIAs) in dynamic smart grids is considered in this paper. The unknown time-varying state variables of the smart grid and the FDIAs impose a significant challenge for designing a computationally efficient detector. To address this challenge, we propose new Cumulative-Sum-type algorithms with computational complex scaling linearly with the number of meters. Moreover, for any constraint on the expected false alarm period, a lower bound on the threshold employed in the proposed algorithm is provided. For any given threshold employed in the proposed algorithm, an upper bound on the worstcase expected detection delay is also derived. The proposed algorithm is numerically investigated in the context of an IEEE standard power system under FDIAs, and is shown to outperform some representative algorithm in the test case.

Tariq, Mahak, Khan, Mashal, Fatima, Sana.  2018.  Detection of False Data in Wireless Sensor Network Using Hash Chain. 2018 International Conference on Applied and Engineering Mathematics (ICAEM). :126-129.

Wireless Sensor Network (WSN) is often to consist of adhoc devices that have low power, limited memory and computational power. WSN is deployed in hostile environment, due to which attacker can inject false data easily. Due to distributed nature of WSN, adversary can easily inject the bogus data into the network because sensor nodes don't ensure data integrity and not have strong authentication mechanism. This paper reviews and analyze the performance of some of the existing false data filtering schemes and propose new scheme to identify the false data injected by adversary or compromised node. Proposed schemes shown better and efficiently filtrate the false data in comparison with existing schemes.

Kim, Sang Wu, Liu, Xudong.  2018.  Crypto-Aided Bayesian Detection of False Data in Short Messages. 2018 IEEE Statistical Signal Processing Workshop (SSP). :253-257.

We propose a crypto-aided Bayesian detection framework for detecting false data in short messages with low overhead. The proposed approach employs the Bayesian detection at the physical layer in parallel with a lightweight cryptographic detection, followed by combining the two detection outcomes. We develop the maximum a posteriori probability (MAP) rule for combining the cryptographic and Bayesian detection outcome, which minimizes the average probability of detection error. We derive the probability of false alarm and missed detection and discuss the improvement of detection accuracy provided by the proposed method.

Dai, Ting, He, Jingzhu, Gu, Xiaohui, Lu, Shan, Wang, Peipei.  2018.  DScope: Detecting Real-World Data Corruption Hang Bugs in Cloud Server Systems. Proceedings of the ACM Symposium on Cloud Computing. :313-325.

Cloud server systems such as Hadoop and Cassandra have enabled many real-world data-intensive applications running inside computing clouds. However, those systems present many data-corruption and performance problems which are notoriously difficult to debug due to the lack of diagnosis information. In this paper, we present DScope, a tool that statically detects data-corruption related software hang bugs in cloud server systems. DScope statically analyzes I/O operations and loops in a software package, and identifies loops whose exit conditions can be affected by I/O operations through returned data, returned error code, or I/O exception handling. After identifying those loops which are prone to hang problems under data corruption, DScope conducts loop bound and loop stride analysis to prune out false positives. We have implemented DScope and evaluated it using 9 common cloud server systems. Our results show that DScope can detect 42 real software hang bugs including 29 newly discovered software hang bugs. In contrast, existing bug detection tools miss detecting most of those bugs.

Xie, Yuxiang, Chen, Nanyu, Shi, Xiaolin.  2018.  False Discovery Rate Controlled Heterogeneous Treatment Effect Detection for Online Controlled Experiments. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. :876-885.

Online controlled experiments (a.k.a. A/B testing) have been used as the mantra for data-driven decision making on feature changing and product shipping in many Internet companies. However, it is still a great challenge to systematically measure how every code or feature change impacts millions of users with great heterogeneity (e.g. countries, ages, devices). The most commonly used A/B testing framework in many companies is based on Average Treatment Effect (ATE), which cannot detect the heterogeneity of treatment effect on users with different characteristics. In this paper, we propose statistical methods that can systematically and accurately identify Heterogeneous Treatment Effect (HTE) of any user cohort of interest (e.g. mobile device type, country), and determine which factors (e.g. age, gender) of users contribute to the heterogeneity of the treatment effect in an A/B test. By applying these methods on both simulation data and real-world experimentation data, we show how they work robustly with controlled low False Discover Rate (FDR), and at the same time, provides us with useful insights about the heterogeneity of identified user groups. We have deployed a toolkit based on these methods, and have used it to measure the Heterogeneous Treatment Effect of many A/B tests at Snap.

Basumallik, Sagnik, Eftekharnejad, Sara, Davis, Nathan, Nuthalapati, Nagarjuna, Johnson, Brian K.  2018.  Cyber Security Considerations on PMU-Based State Estimation. Proceedings of the Fifth Cybersecurity Symposium. :14:1-14:4.

State estimation allows continuous monitoring of a power system by estimating the power system state variables from measurement data. Unfortunately, the measurement data provided by the devices can serve as attack vectors for false data injection attacks. As more components are connected to the internet, power system is exposed to various known and unknown cyber threats. Previous investigations have shown that false data can be injected on data from traditional meters that bypasses bad data detection systems. This paper extends this investigation by giving an overview of cyber security threats to phasor measurement units, assessing the impact of false data injection on hybrid state estimators and suggesting security recommendations. Simulations are performed on IEEE-30 and 118 bus test systems.

Tabakhpour, Adel, Abdelaziz, Morad M. A..  2019.  Neural Network Model for False Data Detection in Power System State Estimation. 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE). :1-5.

False data injection is an on-going concern facing power system state estimation. In this work, a neural network is trained to detect the existence of false data in measurements. The proposed approach can make use of historical data, if available, by using them in the training sets of the proposed neural network model. However, the inputs of perceptron model in this work are the residual elements from the state estimation, which are highly correlated. Therefore, their dimension could be reduced by preserving the most informative features from the inputs. To this end, principal component analysis is used (i.e., a data preprocessing technique). This technique is especially efficient for highly correlated data sets, which is the case in power system measurements. The results of different perceptron models that are proposed for detection, are compared to a simple perceptron that produces identical result to the outlier detection scheme. For generating the training sets, state estimation was run for different false data on different measurements in 13-bus IEEE test system, and the residuals are saved as inputs of training sets. The testing results of the trained network show its good performance in detection of false data in measurements.

2019-12-16
Pal, Manjish, Sahu, Prashant, Jaiswal, Shailesh.  2018.  LevelTree: A New Scalable Data Center Networks Topology. 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). :482-486.

In recent time it has become very crucial for the data center networks (DCN) to broaden the system limit to be able to meet with the increasing need of cloud based applications. A decent DCN topology must comprise of numerous properties for low diameter, high bisection bandwidth, ease of organization and so on. In addition, a DCN topology should depict aptness in failure resiliency, scalability, construction and routing. In this paper, we introduce a new Data Center Network topology termed LevelTree built up with several modules grows as a tree topology and each module is constructed from a complete graph. LevelTree demonstrates great topological properties and it beats critical topologies like Jellyfish, VolvoxDC, and Fattree regarding providing a superior worthwhile plan with greater capacity.

Xing, Han, Zhang, Ke, Yang, Zifan, Sun, Lianying, Liu, Yi.  2018.  Traffic State Estimation with Big Data. Proceedings of the 4th ACM SIGSPATIAL International Workshop on Safety and Resilience. :9:1-9:5.

Traffic state estimation helps urban traffic control and management. In this paper, a traffic state estimation model based on the fusion of Hidden Markov model and SEA algorithm is proposed considering the randomness and volatility of traffic systems. Traffic data of average travel speed in selected city were collected, and the mean and fluctuation values of average travel speed in adjacent time windows were calculated. With Hidden Markov model, the system state network is defined according to mean values and fluctuation values. The operation efficiency of traffic system, as well as stability and trend values, were calculated with System Effectiveness Analysis (SEA) algorithm based on system state network. Calculation results show that the method perform well and can be applied to both traffic state assessment of certain road sections and large scale road networks.

Mikkilineni, Rao, Morana, Giovanni.  2019.  Post-Turing Computing, Hierarchical Named Networks and a New Class of Edge Computing. 2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE). :82-87.

Advances in our understanding of the nature of cognition in its myriad forms (Embodied, Embedded, Extended, and Enactive) displayed in all living beings (cellular organisms, animals, plants, and humans) and new theories of information, info-computation and knowledge are throwing light on how we should build software systems in the digital universe which mimic and interact with intelligent, sentient and resilient beings in the physical universe. Recent attempts to infuse cognition into computing systems to push the boundaries of Church-Turing thesis have led to new computing models that mimic biological systems in encoding knowledge structures using both algorithms executed in stored program control machines and neural networks. This paper presents a new model and implements an application as hierarchical named network composed of microservices to create a managed process workflow by enabling dynamic configuration and reconfiguration of the microservice network. We demonstrate the resiliency, efficiency and scaling of the named microservice network using a novel edge cloud platform by Platina Systems. The platform eliminates the need for Virtual Machine overlay and provides high performance and low-latency with L3 based 100 GbE network and SSD support with RDMA and NVMeoE. The hierarchical named microservice network using Kubernetes provisioning stack provides all the cloud features such as elasticity, autoscaling, self-repair and live-migration without reboot. The model is derived from a recent theoretical framework for unification of different models of computation using "Structural Machines.'' They are shown to simulate Turing machines, inductive Turing machines and also are proved to be more efficient than Turing machines. The structural machine framework with a hierarchy of controllers managing the named service connections provides dynamic reconfiguration of the service network from browsers to database to address rapid fluctuations in the demand for or the availability of resources without having to reconfigure IP address base networks.

Sayin, Muhammed O., Ba\c sar, Tamer.  2018.  Secure Sensor Design for Resiliency of Control Systems Prior to Attack Detection. 2018 IEEE Conference on Control Technology and Applications (CCTA). :1686-1691.

We introduce a new defense mechanism for stochastic control systems with control objectives, to enhance their resilience before the detection of any attacks. To this end, we cautiously design the outputs of the sensors that monitor the state of the system since the attackers need the sensor outputs for their malicious objectives in stochastic control scenarios. Different from the defense mechanisms that seek to detect infiltration or to improve detectability of the attacks, the proposed approach seeks to minimize the damage of possible attacks before they actually have even been detected. We, specifically, consider a controlled Gauss-Markov process, where the controller could have been infiltrated into at any time within the system's operation. Within the framework of game-theoretic hierarchical equilibrium, we provide a semi-definite programming based algorithm to compute the optimal linear secure sensor outputs that enhance the resiliency of control systems prior to attack detection.

Ferdowsi, Farzad, Barati, Masoud, Edrington, Chris S..  2019.  Real-Time Resiliency Assessment of Control Systems in Microgrids Using the Complexity Metric. 2019 IEEE Green Technologies Conference(GreenTech). :1-5.

This paper presents a novel technique to quantify the operational resilience for power electronic-based components affected by High-Impact Low-Frequency (HILF) weather-related events such as high speed winds. In this study, the resilience quantification is utilized to investigate how prompt the system goes back to the pre-disturbance or another stable operational state. A complexity quantification metric is used to assess the system resilience. The test system is a Solid-State Transformer (SST) representing a complex, nonlinear interconnected system. Results show the effectiveness of the proposed technique for quantifying the operational resilience in systems affected by weather-related disturbances.

Karvelas, Nikolaos P., Treiber, Amos, Katzenbeisser, Stefan.  2018.  Examining Leakage of Access Counts in ORAM Constructions. Proceedings of the 2018 Workshop on Privacy in the Electronic Society. :66-70.

Oblivious RAM is a cryptographic primitive that embodies one of the cornerstones of privacy-preserving technologies for database protection. While any Oblivious RAM (ORAM) construction offers access pattern hiding, there does not seem to be a construction that is safe against the potential leakage due to knowledge about the number of accesses performed by a client. Such leakage constitutes a privacy violation, as client data may be stored in a domain specific fashion. In this work, we examine this leakage by considering an adversary that can probe the server that stores an ORAM database, and who takes regular snapshots of it. We show that even against such a weak adversary, no major ORAM architecture is resilient, except for the trivial case, where the client scans the whole database in order to access a single element. In fact, we argue that constructing a non-trivial ORAM that is formally resilient seems impossible. Moreover, we quantify the leakage of different constructions to show which architecture offers the best privacy in practice.

Palanisamy, Saravana Murthy, Dürr, Frank, Tariq, Muhammad Adnan, Rothermel, Kurt.  2018.  Preserving Privacy and Quality of Service in Complex Event Processing Through Event Reordering. Proceedings of the 12th ACM International Conference on Distributed and Event-Based Systems. :40-51.

The Internet of Things (IoT) envisions a huge number of networked sensors connected to the internet. These sensors collect large streams of data which serve as input to wide range of IoT applications and services such as e-health, e-commerce, and automotive services. Complex Event Processing (CEP) is a powerful tool that transforms streams of raw sensor data into meaningful information required by these IoT services. Often these streams of data collected by sensors carry privacy-sensitive information about the user. Thus, protecting privacy is of paramount importance in IoT services based on CEP. In this paper we present a novel pattern-level access control mechanism for CEP based services that conceals private information while minimizing the impact on useful non-sensitive information required by the services to provide a certain quality of service (QoS). The idea is to reorder events from the event stream to conceal privacy-sensitive event patterns while preserving non-privacy sensitive event patterns to maximize QoS. We propose two approaches, namely an ILP-based approach and a graph-based approach, calculating an optimal reordering of events. Our evaluation results show that these approaches are effective in concealing private patterns without significant loss of QoS.

Mazloom, Sahar, Gordon, S. Dov.  2018.  Secure Computation with Differentially Private Access Patterns. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :490-507.

We explore a new security model for secure computation on large datasets. We assume that two servers have been employed to compute on private data that was collected from many users, and, in order to improve the efficiency of their computation, we establish a new tradeoff with privacy. Specifically, instead of claiming that the servers learn nothing about the input values, we claim that what they do learn from the computation preserves the differential privacy of the input. Leveraging this relaxation of the security model allows us to build a protocol that leaks some information in the form of access patterns to memory, while also providing a formal bound on what is learned from the leakage. We then demonstrate that this leakage is useful in a broad class of computations. We show that computations such as histograms, PageRank and matrix factorization, which can be performed in common graph-parallel frameworks such as MapReduce or Pregel, benefit from our relaxation. We implement a protocol for securely executing graph-parallel computations, and evaluate the performance on the three examples just mentioned above. We demonstrate marked improvement over prior implementations for these computations.

Zhao, Liang, Chen, Liqun.  2018.  A Linear Distinguisher and Its Application for Analyzing Privacy-Preserving Transformation Used in Verifiable (Outsourced) Computation. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :253-260.

A distinguisher is employed by an adversary to explore the privacy property of a cryptographic primitive. If a cryptographic primitive is said to be private, there is no distinguisher algorithm that can be used by an adversary to distinguish the encodings generated by this primitive with non-negligible advantage. Recently, two privacy-preserving matrix transformations first proposed by Salinas et al. have been widely used to achieve the matrix-related verifiable (outsourced) computation in data protection. Salinas et al. proved that these transformations are private (in terms of indistinguishability). In this paper, we first propose the concept of a linear distinguisher and two constructions of the linear distinguisher algorithms. Then, we take those two matrix transformations (including Salinas et al.\$'\$s original work and Yu et al.\$'\$s modification) as example targets and analyze their privacy property when our linear distinguisher algorithms are employed by the adversaries. The results show that those transformations are not private even against passive eavesdropping.

Le Métayer, Daniel, Rauzy, Pablo.  2018.  Capacity: An Abstract Model of Control over Personal Data. Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy. :64-75.

While the control of individuals over their personal data is increasingly seen as an essential component of their privacy, the word "control" is usually used in a very vague way, both by lawyers and by computer scientists. This lack of precision may lead to misunderstandings and makes it difficult to check compliance. To address this issue, we propose a formal framework based on capacities to specify the notion of control over personal data and to reason about control properties. We illustrate our framework with social network systems and show that it makes it possible to characterize the types of control over personal data that they provide to their users and to compare them in a rigorous way.

Tsabary, Itay, Eyal, Ittay.  2018.  The Gap Game. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :713-728.

Blockchain-based cryptocurrencies secure a decentralized consensus protocol by incentives. The protocol participants, called miners, generate (mine) a series of blocks, each containing monetary transactions created by system users. As incentive for participation, miners receive newly minted currency and transaction fees paid by transaction creators. Blockchain bandwidth limits lead users to pay increasing fees in order to prioritize their transactions. However, most prior work focused on models where fees are negligible. In a notable exception, Carlsten et al. [17] postulated that if incentives come only from fees then a mining gap would form\textasciitilde— miners would avoid mining when the available fees are insufficient. In this work, we analyze cryptocurrency security in realistic settings, taking into account all elements of expenses and rewards. To study when gaps form, we analyze the system as a game we call the gap game. We analyze the game with a combination of symbolic and numeric analysis tools in a wide range of scenarios. Our analysis confirms Carlsten et al.'s postulate; indeed, we show that gaps form well before fees are the only incentive, and analyze the implications on security. Perhaps surprisingly, we show that different miners choose different gap sizes to optimize their utility, even when their operating costs are identical. Alarmingly, we see that the system incentivizes large miner coalitions, reducing system decentralization. We describe the required conditions to avoid the incentive misalignment, providing guidelines for future cryptocurrency design.

Hou, Ming, Li, Dequan, Wu, Xiongjun, Shen, Xiuyu.  2019.  Differential Privacy of Online Distributed Optimization under Adversarial Nodes. 2019 Chinese Control Conference (CCC). :2172-2177.

Nowadays, many applications involve big data and big data analysis methods appear in many fields. As a preliminary attempt to solve the challenge of big data analysis, this paper presents a distributed online learning algorithm based on differential privacy. Since online learning can effectively process sensitive data, we introduce the concept of differential privacy in distributed online learning algorithms, with the aim at ensuring data privacy during online learning to prevent adversarial nodes from inferring any important data information. In particular, for different adversary models, we consider different type graphs to tolerate a limited number of adversaries near each regular node or tolerate a global limited number of adversaries.

Zhou, Liming, Shan, Yingzi, Chen, Xiaopan.  2019.  An Anonymous Routing Scheme for Preserving Location Privacy in Wireless Sensor Networks. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :262-265.

Wireless sensor networks consist of various sensors that are deployed to monitor the physical world. And many existing security schemes use traditional cryptography theory to protect message content and contextual information. However, we are concerned about location security of nodes. In this paper, we propose an anonymous routing strategy for preserving location privacy (ARPLP), which sets a proxy source node to hide the location of real source node. And the real source node randomly selects several neighbors as receivers until the packets are transmitted to the proxy source. And the proxy source is randomly selected so that the adversary finds it difficult to obtain the location information of the real source node. Meanwhile, our scheme sets a branch area around the sink, which can disturb the adversary by increasing the routing branch. According to the analysis and simulation experiments, our scheme can reduce traffic consumption and communication delay, and improve the security of source node and base station.

Cerf, Sophie, Robu, Bogdan, Marchand, Nicolas, Mokhtar, Sonia Ben, Bouchenak, Sara.  2018.  A Control-Theoretic Approach for Location Privacy in Mobile Applications. 2018 IEEE Conference on Control Technology and Applications (CCTA). :1488-1493.

The prevalent use of mobile applications using location information to improve the quality of their service has arisen privacy issues, particularly regarding the extraction of user's points on interest. Many studies in the literature focus on presenting algorithms that allow to protect the user of such applications. However, these solutions often require a high level of expertise to be understood and tuned properly. In this paper, the first control-based approach of this problem is presented. The protection algorithm is considered as the ``physical'' plant and its parameters as control signals that enable to guarantee privacy despite user's mobility pattern. The following of the paper presents the first control formulation of POI-related privacy measure, as well as dynamic modeling and a simple yet efficient PI control strategy. The evaluation using simulated mobility records shows the relevance and efficiency of the presented approach.

2019-12-10
Ponuma, R, Amutha, R, Haritha, B.  2018.  Compressive Sensing and Hyper-Chaos Based Image Compression-Encryption. 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). :1-5.

A 2D-Compressive Sensing and hyper-chaos based image compression-encryption algorithm is proposed. The 2D image is compressively sampled and encrypted using two measurement matrices. A chaos based measurement matrix construction is employed. The construction of the measurement matrix is controlled by the initial and control parameters of the chaotic system, which are used as the secret key for encryption. The linear measurements of the sparse coefficients of the image are then subjected to a hyper-chaos based diffusion which results in the cipher image. Numerical simulation and security analysis are performed to verify the validity and reliability of the proposed algorithm.