Visible to the public Biblio

Found 599 results

Filters: Keyword is cyber physical systems  [Clear All Filters]
2019-12-10
Tian, Yun, Xu, Wenbo, Qin, Jing, Zhao, Xiaofan.  2018.  Compressive Detection of Random Signals from Sparsely Corrupted Measurements. 2018 International Conference on Network Infrastructure and Digital Content (IC-NIDC). :389-393.

Compressed sensing (CS) integrates sampling and compression into a single step to reduce the processed data amount. However, the CS reconstruction generally suffers from high complexity. To solve this problem, compressive signal processing (CSP) is recently proposed to implement some signal processing tasks directly in the compressive domain without reconstruction. Among various CSP techniques, compressive detection achieves the signal detection based on the CS measurements. This paper investigates the compressive detection problem of random signals when the measurements are corrupted. Different from the current studies that only consider the dense noise, our study considers both the dense noise and sparse error. The theoretical performance is derived, and simulations are provided to verify the derived theoretical results.

Shiddik, Luthfi Rakha, Novamizanti, Ledya, Ramatryana, I N Apraz Nyoman, Hanifan, Hasya Azqia.  2019.  Compressive Sampling for Robust Video Watermarking Based on BCH Code in SWT-SVD Domain. 2019 International Conference on Sustainable Engineering and Creative Computing (ICSECC). :223-227.

The security and confidentiality of the data can be guaranteed by using a technique called watermarking. In this study, compressive sampling is designed and analyzed on video watermarking. Before the watermark compression process was carried out, the watermark was encoding the Bose Chaudhuri Hocquenghem Code (BCH Code). After that, the watermark is processed using the Discrete Sine Transform (DST) and Discrete Wavelet Transform (DWT). The watermark insertion process to the video host using the Stationary Wavelet Transform (SWT), and Singular Value Decomposition (SVD) methods. The results of our system are obtained with the PSNR 47.269 dB, MSE 1.712, and BER 0.080. The system is resistant to Gaussian Blur and rescaling noise attacks.

Zhou, Guorui, Zhu, Xiaoqiang, Song, Chenru, Fan, Ying, Zhu, Han, Ma, Xiao, Yan, Yanghui, Jin, Junqi, Li, Han, Gai, Kun.  2018.  Deep Interest Network for Click-Through Rate Prediction. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. :1059-1068.

Click-through rate prediction is an essential task in industrial applications, such as online advertising. Recently deep learning based models have been proposed, which follow a similar Embedding&MLP paradigm. In these methods large scale sparse input features are first mapped into low dimensional embedding vectors, and then transformed into fixed-length vectors in a group-wise manner, finally concatenated together to fed into a multilayer perceptron (MLP) to learn the nonlinear relations among features. In this way, user features are compressed into a fixed-length representation vector, in regardless of what candidate ads are. The use of fixed-length vector will be a bottleneck, which brings difficulty for Embedding&MLP methods to capture user's diverse interests effectively from rich historical behaviors. In this paper, we propose a novel model: Deep Interest Network (DIN) which tackles this challenge by designing a local activation unit to adaptively learn the representation of user interests from historical behaviors with respect to a certain ad. This representation vector varies over different ads, improving the expressive ability of model greatly. Besides, we develop two techniques: mini-batch aware regularization and data adaptive activation function which can help training industrial deep networks with hundreds of millions of parameters. Experiments on two public datasets as well as an Alibaba real production dataset with over 2 billion samples demonstrate the effectiveness of proposed approaches, which achieve superior performance compared with state-of-the-art methods. DIN now has been successfully deployed in the online display advertising system in Alibaba, serving the main traffic.

Tai, Kai Sheng, Sharan, Vatsal, Bailis, Peter, Valiant, Gregory.  2018.  Sketching Linear Classifiers over Data Streams. Proceedings of the 2018 International Conference on Management of Data. :757-772.

We introduce a new sub-linear space sketch—the Weight-Median Sketch—for learning compressed linear classifiers over data streams while supporting the efficient recovery of large-magnitude weights in the model. This enables memory-limited execution of several statistical analyses over streams, including online feature selection, streaming data explanation, relative deltoid detection, and streaming estimation of pointwise mutual information. Unlike related sketches that capture the most frequently-occurring features (or items) in a data stream, the Weight-Median Sketch captures the features that are most discriminative of one stream (or class) compared to another. The Weight-Median Sketch adopts the core data structure used in the Count-Sketch, but, instead of sketching counts, it captures sketched gradient updates to the model parameters. We provide a theoretical analysis that establishes recovery guarantees for batch and online learning, and demonstrate empirical improvements in memory-accuracy trade-offs over alternative memory-budgeted methods, including count-based sketches and feature hashing.

Deng, Lijin, Piao, Yan, Liu, Shuo.  2018.  Research on SIFT Image Matching Based on MLESAC Algorithm. Proceedings of the 2Nd International Conference on Digital Signal Processing. :17-21.

The difference of sensor devices and the camera position offset will lead the geometric differences of the matching images. The traditional SIFT image matching algorithm has a large number of incorrect matching point pairs and the matching accuracy is low during the process of image matching. In order to solve this problem, a SIFT image matching based on Maximum Likelihood Estimation Sample Consensus (MLESAC) algorithm is proposed. Compared with the traditional SIFT feature matching algorithm, SURF feature matching algorithm and RANSAC feature matching algorithm, the proposed algorithm can effectively remove the false matching feature point pairs during the image matching process. Experimental results show that the proposed algorithm has higher matching accuracy and faster matching efficiency.

Feng, Chenwei, Wang, Xianling, Zhang, Zewang.  2018.  Data Compression Scheme Based on Discrete Sine Transform and Lloyd-Max Quantization. Proceedings of the 3rd International Conference on Intelligent Information Processing. :46-51.

With the increase of mobile equipment and transmission data, Common Public Radio Interface (CPRI) between Building Base band Unit (BBU) and Remote Radio Unit (RRU) suffers amounts of increasing transmission data. It is essential to compress the data in CPRI if more data should be transferred without congestion under the premise of restriction of fiber consumption. A data compression scheme based on Discrete Sine Transform (DST) and Lloyd-Max quantization is proposed in distributed Base Station (BS) architecture. The time-domain samples are transformed by DST according to the characteristics of Orthogonal Frequency Division Multiplexing (OFDM) baseband signals, and then the coefficients after transformation are quantified by the Lloyd-Max quantizer. The simulation results show that the proposed scheme can work at various Compression Ratios (CRs) while the values of Error Vector Magnitude (EVM) are better than the limits in 3GPP.

Huang, Lilian, Zhu, Zhonghang.  2018.  Compressive Sensing Image Reconstruction Using Super-Resolution Convolutional Neural Network. Proceedings of the 2Nd International Conference on Digital Signal Processing. :80-83.

Compressed sensing (CS) can recover a signal that is sparse in certain representation and sample at the rate far below the Nyquist rate. But limited to the accuracy of atomic matching of traditional reconstruction algorithm, CS is difficult to reconstruct the initial signal with high resolution. Meanwhile, scholar found that trained neural network have a strong ability in settling such inverse problems. Thus, we propose a Super-Resolution Convolutional Neural Network (SRCNN) that consists of three convolutional layers. Every layer has a fixed number of kernels and has their own specific function. The process is implemented using classical compressed sensing algorithm to process the input image, afterwards, the output images are coded via SRCNN. We achieve higher resolution image by using the SRCNN algorithm proposed. The simulation results show that the proposed method helps improve PSNR value and promote visual effect.

Sun, Jie, Yu, Jiancheng, Zhang, Aiqun, Song, Aijun, Zhang, Fumin.  2018.  Underwater Acoustic Intensity Field Reconstruction by Kriged Compressive Sensing. Proceedings of the Thirteenth ACM International Conference on Underwater Networks & Systems. :5:1-5:8.

This paper presents a novel Kriged Compressive Sensing (KCS) approach for the reconstruction of underwater acoustic intensity fields sampled by multiple gliders following sawtooth sampling patterns. Blank areas in between the sampling trajectories may cause unsatisfying reconstruction results. The KCS method leverages spatial statistical correlation properties of the acoustic intensity field being sampled to improve the compressive reconstruction process. Virtual data samples generated from a kriging method are inserted into the blank areas. We show that by using the virtual samples along with real samples, the acoustic intensity field can be reconstructed with higher accuracy when coherent spatial patterns exist. Corresponding algorithms are developed for both unweighted and weighted KCS methods. By distinguishing the virtual samples from real samples through weighting, the reconstruction results can be further improved. Simulation results show that both algorithms can improve the reconstruction results according to the PSNR and SSIM metrics. The methods are applied to process the ocean ambient noise data collected by the Sea-Wing acoustic gliders in the South China Sea.

Cui, Wenxue, Jiang, Feng, Gao, Xinwei, Zhang, Shengping, Zhao, Debin.  2018.  An Efficient Deep Quantized Compressed Sensing Coding Framework of Natural Images. Proceedings of the 26th ACM International Conference on Multimedia. :1777-1785.

Traditional image compressed sensing (CS) coding frameworks solve an inverse problem that is based on the measurement coding tools (prediction, quantization, entropy coding, etc.) and the optimization based image reconstruction method. These CS coding frameworks face the challenges of improving the coding efficiency at the encoder, while also suffering from high computational complexity at the decoder. In this paper, we move forward a step and propose a novel deep network based CS coding framework of natural images, which consists of three sub-networks: sampling sub-network, offset sub-network and reconstruction sub-network that responsible for sampling, quantization and reconstruction, respectively. By cooperatively utilizing these sub-networks, it can be trained in the form of an end-to-end metric with a proposed rate-distortion optimization loss function. The proposed framework not only improves the coding performance, but also reduces the computational cost of the image reconstruction dramatically. Experimental results on benchmark datasets demonstrate that the proposed method is capable of achieving superior rate-distortion performance against state-of-the-art methods.

Braverman, Mark, Kol, Gillat.  2018.  Interactive Compression to External Information. Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing. :964-977.

We describe a new way of compressing two-party communication protocols to get protocols with potentially smaller communication. We show that every communication protocol that communicates C bits and reveals I bits of information about the participants' private inputs to an observer that watches the communication, can be simulated by a new protocol that communicates at most poly(I) $\cdot$ loglog(C) bits. Our result is tight up to polynomial factors, as it matches the recent work separating communication complexity from external information cost.

Huang, Xuping.  2018.  Mechanism and Implementation of Watermarked Sample Scanning Method for Speech Data Tampering Detection. Proceedings of the 2Nd International Workshop on Multimedia Privacy and Security. :54-60.

The integrity and reliability of speech data have been important issues to probative use. Watermarking technologies supplies an alternative solution to guarantee the the authenticity of multiple data besides digital signature. This work proposes a novel digital watermarking based on a reversible compression algorithm with sample scanning to detect tampering in time domain. In order to detect tampering precisely, the digital speech data is divided into length-fixed frames and the content-based hash information of each frame is calculated and embedded into the speech data for verification. Huffman compression algorithm is applied to each four sampling bits from least significant bit in each sample after pulse-code modulation processing to achieve low distortion and high capacity for hiding payload. Experimental experiments on audio quality, detection precision and robustness towards attacks are taken, and the results show the effectiveness of tampering detection with a precision with an error around 0.032 s for a 10 s speech clip. Distortion is imperceptible with an average 22.068 dB for Huffman-based and 24.139 dB for intDCT-based method in terms of signal-to-noise, and with an average MOS 3.478 for Huffman-based and 4.378 for intDCT-based method. The bit error rate (BER) between stego data and attacked stego data in both of time-domain and frequency domain is approximate 28.6% in average, which indicates the robustness of the proposed hiding method.

2019-12-05
Hayashi, Masahito.  2018.  Secure Physical Layer Network Coding versus Secure Network Coding. 2018 IEEE Information Theory Workshop (ITW). :1-5.

Secure network coding realizes the secrecy of the message when the message is transmitted via noiseless network and a part of edges or a part of intermediate nodes are eavesdropped. In this framework, if the channels of the network has noise, we apply the error correction to noisy channel before applying the secure network coding. In contrast, secure physical layer network coding is a method to securely transmit a message by a combination of coding operation on nodes when the network is given as a set of noisy channels. In this paper, we give several examples of network, in which, secure physical layer network coding realizes a performance that cannot be realized by secure network coding.

2019-12-02
Ibarra, Jaime, Javed Butt, Usman, Do, Anh, Jahankhani, Hamid, Jamal, Arshad.  2019.  Ransomware Impact to SCADA Systems and its Scope to Critical Infrastructure. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :1–12.
SCADA systems are being constantly migrated to modern information and communication technologies (ICT) -based systems named cyber-physical systems. Unfortunately, this allows attackers to execute exploitation techniques into these architectures. In addition, ransomware insertion is nowadays the most popular attacking vector because it denies the availability of critical files and systems until attackers receive the demanded ransom. In this paper, it is analysed the risk impact of ransomware insertion into SCADA systems and it is suggested countermeasures addressed to the protection of SCADA systems and its components to reduce the impact of ransomware insertion.
2019-09-30
Elbidweihy, H., Arrott, A. S., Provenzano, V..  2018.  Modeling the Role of the Buildup of Magnetic Charges in Low Anisotropy Polycrystalline Materials. IEEE Transactions on Magnetics. 54:1–5.

A Stoner-Wohlfarth-type model is used to demonstrate the effect of the buildup of magnetic charges near the grain boundaries of low anisotropy polycrystalline materials, revealed by measuring the magnetization during positive-field warming after negative-field cooling. The remnant magnetization after negative-field cooling has two different contributions. The temperature-dependent component is modeled as an assembly of particles with thermal relaxation. The temperature-independent component is modeled as an assembly of particles overcoming variable phenomenological energy barriers corresponding to the change in susceptibility when the anisotropy constant changes its sign. The model is applicable to soft-magnetic materials where the buildup of the magnetic charges near the grain boundaries creates demagnetizing fields opposing, and comparable in magnitude to, the anisotropy field. The results of the model are in qualitative agreement with published data revealing the magneto-thermal characteristics of polycrystalline gadolinium.

Hohlfeld, J., Czoschke, P., Asselin, P., Benakli, M..  2019.  Improving Our Understanding of Measured Jitter (in HAMR). IEEE Transactions on Magnetics. 55:1–11.

The understanding of measured jitter is improved in three ways. First, it is shown that the measured jitter is not only governed by written-in jitter and the reader resolution along the cross-track direction but by remanence noise in the vicinity of transitions and the down-track reader resolution as well. Second, a novel data analysis scheme is introduced that allows for an unambiguous separation of these two contributions. Third, based on data analyses involving the first two learnings and micro-magnetic simulations, we identify and explain the root causes for variations of jitter with write current (WC) (write field), WC overshoot amplitude (write-field rise time), and linear disk velocity measured for heat-assisted magnetic recording.

Davila, Y. G., Júnior, F. A. Revoredo, Peña-Garcia, R., Padrón-Hernández, E..  2019.  Peak in Angular Dependence of Coercivity in a Hexagonal Array of Permalloy Spherical Nanocaps. IEEE Magnetics Letters. 10:1–3.

Micromagnetic simulations of coercivity as a function of external magnetic field direction were performed for a hexagonal array of hemispherical Permalloy nanocaps. The analysis was based on hysteresis loops for arrangements of nanocaps of variable thickness (5 nm and 10 nm). The angular dependence of coercivity had a maximum at about 80° with respect to the arrangement plane. An increase in coercivity with nanocap thickness is related to the magnetization reversal mechanism, where the dipole energy of individual caps generates an effective intermediate axis, locking the magnetic moments. The coercivity has maximum values of 109 Oe for 5 nm and 156 Oe for 10 nm thickness. The remanence decreases monotonically with angle. This is associated with the influence of shape anisotropy, where the demagnetizing field in the plane of the array is much smaller than the demagnetizing field perpendicular to the plane.

Liu, B., He, L., Zhang, H., Sfarra, S., Fernandes, H., Perilli, S., Ren, J..  2019.  Research on stress detection technology of long-distance pipeline applying non-magnetic saturation. IET Science, Measurement Technology. 13:168–174.

In order to study the stress detection method on long-distance oil and gas pipeline, the distribution characteristics of the surface remanence signals in the stress concentration regions must be known. They were studied by using the magnetic domain model in the non-magnetic saturation state. The finite element method was used herein with the aim to analyse the static and mechanical characteristics of a ferromagnetic specimen. The variation law of remanence signal in stress concentration regions was simulated. The results show that a residue signal in the stress concentration region exists. In addition, a one-to-one correspondence in the non-magnetic saturation environment is evident. In the case of magnetic saturation, the remanence signal of the stress concentration region is covered and the signal cannot be recognised.

Jiao, Y., Hohlfield, J., Victora, R. H..  2018.  Understanding Transition and Remanence Noise in HAMR. IEEE Transactions on Magnetics. 54:1–5.

Transition noise and remanence noise are the two most important types of media noise in heat-assisted magnetic recording. We examine two methods (spatial splitting and principal components analysis) to distinguish them: both techniques show similar trends with respect to applied field and grain pitch (GP). It was also found that PW50can be affected by GP and reader design, but is almost independent of write field and bit length (larger than 50 nm). Interestingly, our simulation shows a linear relationship between jitter and PW50NSRrem, which agrees qualitatively with experimental results.

2019-09-23
Babu, S., Markose, S..  2018.  IoT Enabled Robots with QR Code Based Localization. 2018 International Conference on Emerging Trends and Innovations In Engineering And Technological Research (ICETIETR). :1–5.

Robots are sophisticated form of IoT devices as they are smart devices that scrutinize sensor data from multiple sources and observe events to decide the best procedural actions to supervise and manoeuvre objects in the physical world. In this paper, localization of the robot is addressed by QR code Detection and path optimization is accomplished by Dijkstras algorithm. The robot can navigate automatically in its environment with sensors and shortest path is computed whenever heading measurements are updated with QR code landmark recognition. The proposed approach highly reduces computational burden and deployment complexity as it reflects the use of artificial intelligence to self-correct its course when required. An Encrypted communication channel is established over wireless local area network using SSHv2 protocol to transfer or receive sensor data(or commands) making it an IoT enabled Robot.

Tan, L., Liu, K., Yan, X., Wan, S., Chen, J., Chang, C..  2018.  Visual Secret Sharing Scheme for Color QR Code. 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC). :961–965.

In this paper, we propose a novel visual secret sharing (VSS) scheme for color QR code (VSSCQR) with (n, n) threshold based on high capacity, admirable visual effects and popularity of color QR code. By splitting and encoding a secret image into QR codes and then fusing QR codes to generate color QR code shares, the scheme can share the secret among a certain number of participants. However, less than n participants cannot reveal any information about the secret. The embedding amount and position of the secret image bits generated by VSS are in the range of the error correction ability of the QR code. Each color share is readable, which can be decoded and thus may not come into notice. On one hand, the secret image can be reconstructed by first decomposing three QR codes from each color QR code share and then stacking the corresponding QR codes based on only human visual system without computational devices. On the other hand, by decomposing three QR codes from each color QR code share and then XORing the three QR codes respectively, we can reconstruct the secret image losslessly. The experiment results display the effect of our scheme.

Arora, M., kumar, C., Verma, A. K..  2018.  Increase Capacity of QR Code Using Compression Technique. 2018 3rd International Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE). :1–5.

The main objective of this research work is to enhance the data storage capacity of the QR codes. By achieving the research aim, we can visualize rapid increase in application domains of QR Codes, mostly for smart cities where one needs to store bulk amount of data. Nowadays India is experiencing demonetization step taken by Prime Minister of the country and QR codes can play major role for this step. They are also helpful for cashless society as many vendors have registered themselves with different e-wallet companies like paytm, freecharge etc. These e-wallet companies have installed QR codes at cash counter of such vendors. Any time when a customer wants to pay his bills, he only needs to scan that particular QR code. Afterwards the QR code decoder application start working by taking necessary action like opening payment gateway etc. So, objective of this research study focuses on solving this issue by applying proposed methodology.

Wang, Y., Sun, C., Kuan, P., Lu, C., Wang, H..  2018.  Secured graphic QR code with infrared watermark. 2018 IEEE International Conference on Applied System Invention (ICASI). :690–693.

The barcode is an important link between real life and the virtual world nowadays. One of the most common barcodes is QR code, which its appearance, black and white modules, is not visually pleasing. The QR code is applied to product packaging and campaign promotion in the market. There are more and more stores using QR code for transaction payment. If the QR code is altered or illegally duplicated, it will endanger the information security of users. Therefore, the study uses infrared watermarking to embed the infrared QR code information into the explicit QR code to strengthen the anti-counterfeiting features. The explicit graphic QR code is produced by data hiding with error diffusion in this study. With the optical characteristics of K, one of the four printed ink colors CMYK (Cyan, Magenta, Yellow, Black), only K can be rendered in infrared. Hence, we use the infrared watermarking to embed the implicit QR code information into the explicit graphic QR code. General QR code reader may be used to interpret explicit graphic QR code information. As for implicit QR code, it needs the infrared detector to extract its implicit QR code information. If the QR code is illegally copied, it will not show the hidden second QR code under infrared detection. In this study, infrared watermark hidden in the graphic QR code can enhance not only the aesthetics of QR code, but also the anti-counterfeiting feature. It can also be applied to printing related fields, such as security documents, banknotes, etc. in the future.

Kobayashi, Toru, Nakashima, Ryota, Uchida, Rinsuke, Arai, Kenichi.  2018.  SNS Door Phone As Robotic Process Automation. Proceedings of the 2018 ACM International Conference on Interactive Surfaces and Spaces. :457–460.
We developed SNS Door Phone by making an interphone system an IoT device. We integrated SNS and QR-code recognition function with an interphone system. Thanks to connection with SNS, we can know the visit of the parcel delivery service anytime through SNS even if during going out. Thanks to introduction of QR-code recognition function, if a parcel deliveryman only showed the QR-code of the parcel in front of SNS Door Phone, the re-delivery operation information would be sent to a user automatically through SNS. Then, the user can call or ask re-delivery arrangement using smart phone without inputting any additional data. We can consider this kind of seamless re-delivery operation to be a good example of Robotic Process Automation.
Zhang, Caixia, Bai, Gang.  2018.  Using Hybrid Features of QR Code to Locate and Track in Augmented Reality. Proceedings of the 2018 International Conference on Information Science and System. :273–279.
Augmented Reality (AR) is a technique which seamlessly integrate virtual 3D models into the image of the real scenario in real time. Using the QR code as the identification mark, an algorithm is proposed to extract the virtual straight line of QR code and to locate and track the camera based on the hybrid features, thus it avoids the possibility of failure when locating and tracking only by feature points. The experimental results show that the method of combining straight lines with feature points is better than that of using only straight lines or feature points. Further, an AR (Augmented Reality) system is developed.
Ahmed, Hamdi Abdurhman, Jang, Jong Wook.  2018.  Document Certificate Authentication System Using Digitally Signed QR Code Tag. Proceedings of the 12th International Conference on Ubiquitous Information Management and Communication. :65:1–65:5.
Now a day document such as Degree certificate can be easily forged fully or partially modifying obtained score result like GPA (Grade Point Average). Digital signature are used to detect unauthorized modification to data and to authenticate the identity of signatory. The Quick Response (QR) code was designed for storage information and high-speed readability. This paper proposed a method that QR code will contain a digital signature with the student data such as degree holder's name, major program, GPA obtained and more, which will be signed by Higher Educational Institute (HEI). In order to use this system, all HEI have to register in central system, the central system provide another system that will deploy in each HEI. All digitally signed certificate generating process are offline. To verify the digital signature signed with QR code, we developed specific smart phone application which will scan and authenticate the certificate without the need to address the certificate issuing institution and gaining access to user's security credentials.