Visible to the public Biblio

Filters: Keyword is detection method  [Clear All Filters]
2020-12-14
Ge, K., He, Y..  2020.  Detection of Sybil Attack on Tor Resource Distribution. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :328–332.
Tor anonymous communication system's resource publishing is vulnerable to enumeration attacks. Zhao determines users who requested resources are unavailable as suspicious malicious users, and gradually reduce the scope of suspicious users through several stages to reduce the false positive rate. However, it takes several stages to distinguish users. Although this method successfully detects the malicious user, the malicious user has acquired many resources in the previous stages, which reduce the availability of the anonymous communication system. This paper proposes a detection method based on Integer Linear Program to detect malicious users who perform enumeration attacks on resources in the process of resource distribution. First, we need construct a bipartite graph between the unavailable resources and the users who requested for these resources in the anonymous communication system; next we use Integer Linear Program to find the minimum malicious user set. We simulate the resource distribution process through computer program, we perform an experimental analysis of the method in this paper is carried out. Experimental results show that the accuracy of the method in this paper is above 80%, when the unavailable resources in the system account for no more than 50%. It is about 10% higher than Zhao's method.
2020-11-04
Jin, Y., Tomoishi, M., Matsuura, S..  2019.  A Detection Method Against DNS Cache Poisoning Attacks Using Machine Learning Techniques: Work in Progress. 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA). :1—3.

DNS based domain name resolution has been known as one of the most fundamental Internet services. In the meanwhile, DNS cache poisoning attacks also have become a critical threat in the cyber world. In addition to Kaminsky attacks, the falsified data from the compromised authoritative DNS servers also have become the threats nowadays. Several solutions have been proposed in order to prevent DNS cache poisoning attacks in the literature for the former case such as DNSSEC (DNS Security Extensions), however no effective solutions have been proposed for the later case. Moreover, due to the performance issue and significant workload increase on DNS cache servers, DNSSEC has not been deployed widely yet. In this work, we propose an advanced detection method against DNS cache poisoning attacks using machine learning techniques. In the proposed method, in addition to the basic 5-tuple information of a DNS packet, we intend to add a lot of special features extracted based on the standard DNS protocols as well as the heuristic aspects such as “time related features”, “GeoIP related features” and “trigger of cached DNS data”, etc., in order to identify the DNS response packets used for cache poisoning attacks especially those from compromised authoritative DNS servers. In this paper, as a work in progress, we describe the basic idea and concept of our proposed method as well as the intended network topology of the experimental environment while the prototype implementation, training data preparation and model creation as well as the evaluations will belong to the future work.

2020-09-28
Zhang, Xun, Zhao, Jinxiong, Yang, Fan, Zhang, Qin, Li, Zhiru, Gong, Bo, Zhi, Yong, Zhang, Xuejun.  2019.  An Automated Composite Scanning Tool with Multiple Vulnerabilities. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). :1060–1064.
In order to effectively do network security protection, detecting system vulnerabilities becomes an indispensable process. Here, the vulnerability detection module with three functions is assembled into a device, and a composite detection tool with multiple functions is proposed to deal with some frequent vulnerabilities. The tool includes a total of three types of vulnerability detection, including cross-site scripting attacks, SQL injection, and directory traversal. First, let's first introduce the principle of each type of vulnerability; then, introduce the detection method of each type of vulnerability; finally, detail the defenses of each type of vulnerability. The benefits are: first, the cost of manual testing is eliminated; second, the work efficiency is greatly improved; and third, the network is safely operated in the first time.
2020-09-04
Velan, Petr, Husák, Martin, Tovarňák, Daniel.  2018.  Rapid prototyping of flow-based detection methods using complex event processing. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1—3.
Detection of network attacks is the first step to network security. Many different methods for attack detection were proposed in the past. However, descriptions of these methods are often not complete and it is difficult to verify that the actual implementation matches the description. In this demo paper, we propose to use Complex Event Processing (CEP) for developing detection methods based on network flows. By writing the detection methods in an Event Processing Language (EPL), we can address the above-mentioned problems. The SQL-like syntax of most EPLs is easily readable so the detection method is self-documented. Moreover, it is directly executable in the CEP system, which eliminates inconsistencies between documentation and implementation. The demo will show a running example of a multi-stage HTTP brute force attack detection using Esper and its EPL.
2020-04-06
Liu, Lan, Lin, Jun, Wang, Qiang, Xu, Xiaoping.  2018.  Research on Network Malicious Code Detection and Provenance Tracking in Future Network. 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :264–268.
with the development of SDN, ICN and 5G networks, the research of future network becomes a hot topic. Based on the design idea of SDN network, this paper analyzes the propagation model and detection method of malicious code in future network. We select characteristics of SDN and analyze the features use different feature selection methods and sort the features. After comparison the influence of running time by different classification algorithm of different feature selection, we analyze the choice of reduction dimension m, and find out the different types of malicious code corresponding to the optimal feature subset and matching classification method, designed for malware detection system. We analyze the node migration rate of malware in mobile network and its effect on the outbreak of the time. In this way, it can provide reference for the management strategy of the switch node or the host node by future network controller.
2020-03-02
Li, Wei, Zhang, Dongmei.  2019.  RSSI Sequence and Vehicle Driving Matrix Based Sybil Nodes Detection in VANET. 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN). :763–767.

In VANET, Sybil nodes generated by attackers cause serious damages to network protocols, resource allocation mechanisms, and reputation models. Other types of attacks can also be launched on the basis of Sybil attack, which bring more threats to VANET. To solve this problem, this paper proposes a Sybil nodes detection method based on RSSI sequence and vehicle driving matrix - RSDM. RSDM evaluates the difference between the RSSI sequence and the driving matrix by dynamic distance matching to detect Sybil nodes. Moreover, RSDM does not rely on VANET infrastructure, neighbor nodes or specific hardware. The experimental results show that RSDM performs well with a higher detection rate and a lower error rate.

2020-02-26
Shi, Qihang, Vashistha, Nidish, Lu, Hangwei, Shen, Haoting, Tehranipoor, Bahar, Woodard, Damon L, Asadizanjani, Navid.  2019.  Golden Gates: A New Hybrid Approach for Rapid Hardware Trojan Detection Using Testing and Imaging. 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :61–71.

Hardware Trojans are malicious modifications on integrated circuits (IC), which pose a grave threat to the security of modern military and commercial systems. Existing methods of detecting hardware Trojans are plagued by the inability of detecting all Trojans, reliance on golden chip that might not be available, high time cost, and low accuracy. In this paper, we present Golden Gates, a novel detection method designed to achieve a comparable level of accuracy to full reverse engineering, yet paying only a fraction of its cost in time. The proposed method inserts golden gate circuits (GGC) to achieve superlative accuracy in the classification of all existing gate footprints using rapid scanning electron microscopy (SEM) and backside ultra thinning. Possible attacks against GGC as well as malicious modifications on interconnect layers are discussed and addressed with secure built-in exhaustive test infrastructure. Evaluation with real SEM images demonstrate high classification accuracy and resistance to attacks of the proposed technique.

2019-03-15
Cozzi, M., Galliere, J., Maurine, P..  2018.  Exploiting Phase Information in Thermal Scans for Stealthy Trojan Detection. 2018 21st Euromicro Conference on Digital System Design (DSD). :573-576.

Infrared thermography has been recognized for its ability to investigate integrated circuits in a non destructive way. Coupled to lock-in correlation it has proven efficient in detecting thermal hot spots. Most of the state of the Art measurement systems are based on amplitude analysis. In this paper we propose to investigate weak thermal hot spots using the phase of infrared signals. We demonstrate that phase analysis is a formidable alternative to amplitude to detect small heat signatures. Finally, we apply our measurement platform and its detection method to the identification of stealthy hardware Trojans.