Visible to the public Biblio

Filters: Keyword is target tracking  [Clear All Filters]
2017-03-29
Nisha, Dave, M..  2016.  Storage as a parameter for classifying dynamic key management schemes proposed for WSNs. 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT). :51–56.

Real world applications of Wireless Sensor Networks such as border control, healthcare monitoring and target tracking require secure communications. Thus, during WSN setup, one of the first requirements is to distribute the keys to the sensor nodes which can be later used for securing the messages exchanged between sensors. The key management schemes in WSN secure the communication between a pair or a group of nodes. However, the storage capacity of the sensor nodes is limited which makes storage requirement as an important parameter for the evaluation of key management schemes. This paper classifies the existing key management schemes proposed for WSNs into three categories: storage inefficient, storage efficient and highly storage efficient key management schemes.

2017-02-21
W. Ketpan, S. Phonsri, R. Qian, M. Sellathurai.  2015.  "On the Target Detection in OFDM Passive Radar Using MUSIC and Compressive Sensing". 2015 Sensor Signal Processing for Defence (SSPD). :1-5.

The passive radar also known as Green Radar exploits the available commercial communication signals and is useful for target tracking and detection in general. Recent communications standards frequently employ Orthogonal Frequency Division Multiplexing (OFDM) waveforms and wideband for broadcasting. This paper focuses on the recent developments of the target detection algorithms in the OFDM passive radar framework where its channel estimates have been derived using the matched filter concept using the knowledge of the transmitted signals. The MUSIC algorithm, which has been modified to solve this two dimensional delay-Doppler detection problem, is first reviewed. As the target detection problem can be represented as sparse signals, this paper employs compressive sensing to compare with the detection capability of the 2-D MUSIC algorithm. It is found that the previously proposed single time sample compressive sensing cannot significantly reduce the leakage from the direct signal component. Furthermore, this paper proposes the compressive sensing method utilizing multiple time samples, namely l1-SVD, for the detection of multiple targets. In comparison between the MUSIC and compressive sensing, the results show that l1-SVD can decrease the direct signal leakage but its prerequisite of computational resources remains a major issue. This paper also presents the detection performance of these two algorithms for closely spaced targets.

W. Huang, J. Gu, X. Ma.  2015.  "Visual tracking based on compressive sensing and particle filter". 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE). :1435-1440.

A robust appearance model is usually required in visual tracking, which can handle pose variation, illumination variation, occlusion and many other interferences occurring in video. So far, a number of tracking algorithms make use of image samples in previous frames to update appearance models. There are many limitations of that approach: 1) At the beginning of tracking, there exists no sufficient amount of data for online update because these adaptive models are data-dependent and 2) in many challenging situations, robustly updating the appearance models is difficult, which often results in drift problems. In this paper, we proposed a tracking algorithm based on compressive sensing theory and particle filter framework. Features are extracted by random projection with data-independent basis. Particle filter is employed to make a more accurate estimation of the target location and make much of the updated classifier. The robustness and the effectiveness of our tracker have been demonstrated in several experiments.

2015-05-05
Hang Shao, Japkowicz, N., Abielmona, R., Falcon, R..  2014.  Vessel track correlation and association using fuzzy logic and Echo State Networks. Evolutionary Computation (CEC), 2014 IEEE Congress on. :2322-2329.

Tracking moving objects is a task of the utmost importance to the defence community. As this task requires high accuracy, rather than employing a single detector, it has become common to use multiple ones. In such cases, the tracks produced by these detectors need to be correlated (if they belong to the same sensing modality) or associated (if they were produced by different sensing modalities). In this work, we introduce Computational-Intelligence-based methods for correlating and associating various contacts and tracks pertaining to maritime vessels in an area of interest. Fuzzy k-Nearest Neighbours will be used to conduct track correlation and Fuzzy C-Means clustering will be applied for association. In that way, the uncertainty of the track correlation and association is handled through fuzzy logic. To better model the state of the moving target, the traditional Kalman Filter will be extended using an Echo State Network. Experimental results on five different types of sensing systems will be discussed to justify the choices made in the development of our approach. In particular, we will demonstrate the judiciousness of using Fuzzy k-Nearest Neighbours and Fuzzy C-Means on our tracking system and show how the extension of the traditional Kalman Filter by a recurrent neural network is superior to its extension by other methods.

Fink, G.A., Haack, J.N., McKinnon, A.D., Fulp, E.W..  2014.  Defense on the Move: Ant-Based Cyber Defense. Security Privacy, IEEE. 12:36-43.

Many common cyberdefenses (like firewalls and intrusion-detection systems) are static, giving attackers the freedom to probe them at will. Moving-target defense (MTD) adds dynamism, putting the systems to be defended in motion, potentially at great cost to the defender. An alternative approach is a mobile resilient defense that removes attackers' ability to rely on prior experience without requiring motion in the protected infrastructure. The defensive technology absorbs most of the cost of motion, is resilient to attack, and is unpredictable to attackers. The authors' mobile resilient defense, Ant-Based Cyber Defense (ABCD), is a set of roaming, bio-inspired, digital-ant agents working with stationary agents in a hierarchy headed by a human supervisor. ABCD provides a resilient, extensible, and flexible defense that can scale to large, multi-enterprise infrastructures such as the smart electric grid.

Carvalho, M., Ford, R..  2014.  Moving-Target Defenses for Computer Networks. Security Privacy, IEEE. 12:73-76.

One of the criticisms of traditional security approaches is that they present a static target for attackers. Critics state, with good justification, that by allowing the attacker to reconnoiter a system at leisure to plan an attack, defenders are immediately disadvantaged. To address this, the concept of moving-target defense (MTD) has recently emerged as a new paradigm for protecting computer networks and systems.
 

2015-05-04
Van Vaerenbergh, S., González, O., Vía, J., Santamaría, I..  2014.  Physical layer authentication based on channel response tracking using Gaussian processes. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. :2410-2414.

Physical-layer authentication techniques exploit the unique properties of the wireless medium to enhance traditional higher-level authentication procedures. We propose to reduce the higher-level authentication overhead by using a state-of-the-art multi-target tracking technique based on Gaussian processes. The proposed technique has the additional advantage that it is capable of automatically learning the dynamics of the trusted user's channel response and the time-frequency fingerprint of intruders. Numerical simulations show very low intrusion rates, and an experimental validation using a wireless test bed with programmable radios demonstrates the technique's effectiveness.

Lan Zhang, Kebin Liu, Yonghang Jiang, Xiang-Yang Li, Yunhao Liu, Panlong Yang.  2014.  Montage: Combine frames with movement continuity for realtime multi-user tracking. INFOCOM, 2014 Proceedings IEEE. :799-807.

In this work we design and develop Montage for real-time multi-user formation tracking and localization by off-the-shelf smartphones. Montage achieves submeter-level tracking accuracy by integrating temporal and spatial constraints from user movement vector estimation and distance measuring. In Montage we designed a suite of novel techniques to surmount a variety of challenges in real-time tracking, without infrastructure and fingerprints, and without any a priori user-specific (e.g., stride-length and phone-placement) or site-specific (e.g., digitalized map) knowledge. We implemented, deployed and evaluated Montage in both outdoor and indoor environment. Our experimental results (847 traces from 15 users) show that the stride-length estimated by Montage over all users has error within 9cm, and the moving-direction estimated by Montage is within 20°. For realtime tracking, Montage provides meter-second-level formation tracking accuracy with off-the-shelf mobile phones.

2015-05-01
Hammoud, R.I., Sahin, C.S., Blasch, E.P., Rhodes, B.J..  2014.  Multi-source Multi-modal Activity Recognition in Aerial Video Surveillance. Computer Vision and Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference on. :237-244.

Recognizing activities in wide aerial/overhead imagery remains a challenging problem due in part to low-resolution video and cluttered scenes with a large number of moving objects. In the context of this research, we deal with two un-synchronized data sources collected in real-world operating scenarios: full-motion videos (FMV) and analyst call-outs (ACO) in the form of chat messages (voice-to-text) made by a human watching the streamed FMV from an aerial platform. We present a multi-source multi-modal activity/event recognition system for surveillance applications, consisting of: (1) detecting and tracking multiple dynamic targets from a moving platform, (2) representing FMV target tracks and chat messages as graphs of attributes, (3) associating FMV tracks and chat messages using a probabilistic graph-based matching approach, and (4) detecting spatial-temporal activity boundaries. We also present an activity pattern learning framework which uses the multi-source associated data as training to index a large archive of FMV videos. Finally, we describe a multi-intelligence user interface for querying an index of activities of interest (AOIs) by movement type and geo-location, and for playing-back a summary of associated text (ACO) and activity video segments of targets-of-interest (TOIs) (in both pixel and geo-coordinates). Such tools help the end-user to quickly search, browse, and prepare mission reports from multi-source data.

Van Vaerenbergh, S., González, O., Vía, J., Santamaría, I..  2014.  Physical layer authentication based on channel response tracking using Gaussian processes. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. :2410-2414.

Physical-layer authentication techniques exploit the unique properties of the wireless medium to enhance traditional higher-level authentication procedures. We propose to reduce the higher-level authentication overhead by using a state-of-the-art multi-target tracking technique based on Gaussian processes. The proposed technique has the additional advantage that it is capable of automatically learning the dynamics of the trusted user's channel response and the time-frequency fingerprint of intruders. Numerical simulations show very low intrusion rates, and an experimental validation using a wireless test bed with programmable radios demonstrates the technique's effectiveness.