Biblio
With the development of the information age, the process of global networking continues to deepen, and the cyberspace security has become an important support for today’s social functions and social activities. Web applications which have many security risks are the most direct interactive way in the process of the Internet activities. That is why the web applications face a large number of network attacks. Interpretive dynamic programming languages are easy to lean and convenient to use, they are widely used in the development of cross-platform web systems. As well as benefit from these advantages, the web system based on those languages is hard to detect errors and maintain the complex system logic, increasing the risk of system vulnerability and cyber threats. The attack defense of systems based on interpretive dynamic programming languages is widely concerned by researchers. Since the advance of endogenous security technologies, there are breakthroughs on the research of web system security. Compared with traditional security defense technologies, these technologies protect the system with their uncertainty, randomness and dynamism. Based on several common network attacks, the traditional system security defense technology and endogenous security technology of web application based on interpretive dynamic languages are surveyed and compared in this paper. Furthermore, the possible research directions of those technologies are discussed.
Real-time situational awareness (SA) plays an essential role in accurate and timely incident response. Maintaining SA is, however, extremely costly due to excessive false alerts generated by intrusion detection systems, which require prioritization and manual investigation by security analysts. In this paper, we propose a novel approach to prioritizing alerts so as to maximize SA, by formulating the problem as that of active learning in a hidden Markov model (HMM). We propose to use the entropy of the belief of the security state as a proxy for the mean squared error (MSE) of the belief, and we develop two computationally tractable policies for choosing alerts to investigate that minimize the entropy, taking into account the potential uncertainty of the investigations' results. We use simulations to compare our policies to a variety of baseline policies. We find that our policies reduce the MSE of the belief of the security state by up to 50% compared to static baseline policies, and they are robust to high false alert rates and to the investigation errors.
Active consumers have now been empowered thanks to the smart grid concept. To avoid fossil fuels, the demand side must provide flexibility through Demand Response events. However, selecting the proper participants for an event can be complex due to response uncertainty. The authors design a Contextual Consumer Rate to identify the trustworthy participants according to previous performances. In the present case study, the authors address the problem of new players with no information. In this way, two different methods were compared to predict their rate. Besides, the authors also refer to the consumer privacy testing of the dataset with and without information that could lead to the participant identification. The results found to prove that, for the proposed methodology, private information does not have a high impact to attribute a rate.
Over the past decade, smart grids have been widely implemented. Real-time pricing can better address demand-side management in smart grids. Real-time pricing requires managers to interact more with consumers at the data level, which raises many privacy threats. Thus, we introduce differential privacy into the Real-time pricing for privacy protection. However, differential privacy leaves more space for an adversary to compromise the robustness of the system, which has not been well addressed in the literature. In this paper, we propose a novel active attack detection scheme against stealthy attacks, and then give the proof of correctness and effectiveness of the proposed scheme. Further, we conduct extensive experiments with real datasets from CER to verify the detection performance of the proposed scheme.