Biblio
Supply chain security threats pose new challenges to security risk modeling techniques for complex ICT systems such as the IoT. With established techniques drawn from attack trees and reliability analysis providing needed points of reference, graph-based analysis can provide a framework for considering the role of suppliers in such systems. We present such a framework here while highlighting the need for a component-centered model. Given resource limitations when applying this model to existing systems, we study various classes of uncertainties in model development, including structural uncertainties and uncertainties in the magnitude of estimated event probabilities. Using case studies, we find that structural uncertainties constitute a greater challenge to model utility and as such should receive particular attention. Best practices in the face of these uncertainties are proposed.
The contemporary struggle that rests upon security risk assessment of Information Systems is its feasibility in the presence of an indeterminate environment when information is insufficient, conflicting, generic or ambiguous. But as pointed out by the security experts, most of the traditional approaches to risk assessment of information systems security are no longer practicable as they fail to deliver viable support on handling uncertainty. Therefore, to address this issue, we have anticipated a comprehensive risk assessment model based on Bayesian Belief Network (BBN) and Fuzzy Inference Scheme (FIS) process to function in an indeterminate environment. The proposed model is demonstrated and further comparisons are made on the test results to validate the reliability of the proposed model.
This article analyzes the possibilities of using cognitive approaches in forming expert assessments for solving information security problems. The experts use the contextual approach by A.Yu. Khrennikov’s as a basic model for the mathematical description of the quantum decision-making method. In the cognitive view, expert assessments are proposed to be considered as conditional probabilities with regard to the fulfillment of a set of certain conditions. However, the conditions in this approach are contextual, but not events like in Boolean algebra.
Secure multi-party computation(SMPC) is an important research field in cryptography, secure multi-party computation has a wide range of applications in practice. Accordingly, information security issues have arisen. Aiming at security issues in Secure multi-party computation, we consider that semi-honest participants have malicious operations such as collusion in the process of information interaction, gaining an information advantage over honest parties through collusion which leads to deviations in the security of the protocol. To solve this problem, we combine information entropy to propose an n-round information exchange protocol, in which each participant broadcasts a relevant information value in each round without revealing additional information. Through the change of the uncertainty of the correct result value in each round of interactive information, each participant cannot determine the correct result value before the end of the protocol. Security analysis shows that our protocol guarantees the security of the output obtained by the participants after the completion of the protocol.
Nowadays, video surveillance systems are part of our daily life, because of their role in ensuring the security of goods and people this generates a huge amount of video data. Thus, several research works based on the ontology paradigm have tried to develop an efficient system to index and search precisely a very large volume of videos. Due to their semantic expressiveness, ontologies are undoubtedly very much in demand in recent years in the field of video surveillance to overcome the problem of the semantic gap between the interpretation of the data extracted from the low level and the high-level semantics of the video. Despite its good expressiveness of semantics, a classical ontology may not be sufficient for good handling of uncertainty, which is however commonly present in the video surveillance domain, hence the need to consider a new ontological approach that will better represent uncertainty. Fuzzy logic is recognized as a powerful tool for dealing with vague, incomplete, imperfect, or uncertain data or information. In this work, we develop a new ontological approach based on fuzzy logic. All the relevant fuzzy concepts such as Video\_Objects, Video\_Events, Video\_Sequences, that could appear in a video surveillance domain are well represented with their fuzzy Ontology DataProperty and the fuzzy relations between them (Ontology ObjectProperty). To achieve this goal, the new fuzzy video surveillance ontology is implemented using the fuzzy ontology web language 2 (fuzzy owl2) which is an extension of the standard semantic web language, ontology web language 2 (owl2).
Today's companies are increasingly relying on Internet of Everything (IoE) to modernize their operations. The very complexes characteristics of such system expose their applications and their exchanged data to multiples risks and security breaches that make them targets for cyber attacks. The aim of our work in this paper is to provide an cybersecurity strategy whose objective is to prevent and anticipate threats related to the IoE. An economic approach is used in order to help to take decisions according to the reduction of the risks generated by the non definition of the appropriate levels of security. The considered problem have been resolved by exploiting a combinatorial optimization approach with a practical case of knapsack. We opted for a bi-objective modeling under uncertainty with a constraint of cardinality and a given budget to be respected. To guarantee a robustness of our strategy, we have also considered the criterion of uncertainty by taking into account all the possible threats that can be generated by a cyber attacks over IoE. Our strategy have been implemented and simulated under MATLAB environement and its performance results have been compared to those obtained by NSGA-II metaheuristic. Our proposed cyber security strategy recorded a clear improvment of efficiency according to the optimization of the security level and cost parametrs.