Visible to the public Biblio

Found 152 results

Filters: Keyword is Uncertainty  [Clear All Filters]
2022-10-04
Chen, Cen, Sun, Chengzhi, Wu, Liqin, Ye, Xuerong, Zhai, Guofu.  2021.  Model-Based Quality Consistency Analysis of Permanent Magnet Synchronous Motor Cogging Torque in Wide Temperature Range. 2021 3rd International Conference on System Reliability and Safety Engineering (SRSE). :131–138.
Permanent magnet synchronous motors (PMSM) are widely used in the shafts of industrial robots. The quality consistency of PMSM, derived from both the wide range of operating temperature and inherent uncertainties, significantly influences the application of the PMSM. In this paper, the mechanism of temperature influence on the PMSM is analyzed with the aid of the digital model, and the quantitative relationship between the main PMSM feature, the cogging torque, and the temperature is revealed. Then, the NdFeB remanence in different temperature levels was measured to obtain its temperature coefficient. The finite element method is used to simulate PMSM. The qualitative and quantitative conclusions of cogging torque drop when the temperature rises are verified by experiments. The magnetic performance data of the magnetic tiles of 50 motors were randomly sampled and the cogging torque simulation was carried out under the fixed ambient temperature. The results show that the dispersion significantly increases the stray harmonic components of the cogging torque.
2022-09-30
Min, Huang, Li, Cheng Yun.  2021.  Construction of information security risk assessment model based on static game. 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT). :647–650.
Game theory is a branch of modern mathematics, which is a mathematical method to study how decision-makers should make decisions in order to strive for the maximum interests in the process of competition. In this paper, from the perspective of offensive and defensive confrontation, using game theory for reference, we build a dynamic evaluation model of information system security risk based on static game model. By using heisani transformation, the uncertainty of strategic risk of offensive and defensive sides is transformed into the uncertainty of each other's type. The security risk of pure defense strategy and mixed defense strategy is analyzed quantitatively, On this basis, an information security risk assessment algorithm based on static game model is designed.
2022-09-20
Boutaib, Sofien, Elarbi, Maha, Bechikh, Slim, Palomba, Fabio, Said, Lamjed Ben.  2021.  A Possibilistic Evolutionary Approach to Handle the Uncertainty of Software Metrics Thresholds in Code Smells Detection. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS). :574—585.
A code smells detection rule is a combination of metrics with their corresponding crisp thresholds and labels. The goal of this paper is to deal with metrics' thresholds uncertainty; as usually such thresholds could not be exactly determined to judge the smelliness of a particular software class. To deal with this issue, we first propose to encode each metric value into a binary possibility distribution with respect to a threshold computed from a discretization technique; using the Possibilistic C-means classifier. Then, we propose ADIPOK-UMT as an evolutionary algorithm that evolves a population of PK-NN classifiers for the detection of smells under thresholds' uncertainty. The experimental results reveal that the possibility distribution-based encoding allows the implicit weighting of software metrics (features) with respect to their computed discretization thresholds. Moreover, ADIPOK-UMT is shown to outperform four relevant state-of-art approaches on a set of commonly adopted benchmark software systems.
2022-09-16
Simankov, Vladimir S., Buchatskiy, Pavel Yu., Shopin, Andrey V., Teploukhov, Semen V., Buchatskaya, Victoria V..  2021.  An Approach to Identifying the Type of Uncertainty of Initial Information Based on the Theory of Fuzzy Logic. 2021 XXIV International Conference on Soft Computing and Measurements (SCM). :150—153.
The article discusses an approach to identifying the uncertainty of initial information based on the theory of fuzzy logic. A system of criteria for initial information is proposed, calculated on the basis of the input sample, and characterizing the measure of uncertainty present in the system. The basic requirements for the choice of membership functions of the fuzzy inference system are indicated and the final integrated output membership function is obtained, which describes the type of uncertainty of the initial information.
2022-09-09
Benabdallah, Chaima, El-Amraoui, Adnen, Delmotte, François, Frikha, Ahmed.  2020.  An integrated rough-DEMA℡ method for sustainability risk assessment in agro-food supply chain. 2020 5th International Conference on Logistics Operations Management (GOL). :1—9.
In the recent years, sustainability has becoming an important topic in agro-food supply chain. Moreover, these supply chains are more vulnerable due to different interrelated risks from man-made and natural disasters. However, most of the previous studies consider less about interrelation in assessing sustainability risks. The purpose of this research is to develop a framework to assess supply chain sustainability risks by rnking environmental risks, economic risks, social risks and operational risks. To solve this problem, the proposed methodology is an integrated rough decision- making and trial evaluation laboratory (DEMA℡) method that consider the interrelationship between different risks and the group preference diversity. In order to evaluate the applicability of the proposed method, a real-world case study of Tunisian agro-food company is presented. The results show that the most important risks are corruption, inflation and uncertainty in supply and demand.
Kieras, Timothy, Farooq, Muhammad Junaid, Zhu, Quanyan.  2020.  Modeling and Assessment of IoT Supply Chain Security Risks: The Role of Structural and Parametric Uncertainties. 2020 IEEE Security and Privacy Workshops (SPW). :163—170.

Supply chain security threats pose new challenges to security risk modeling techniques for complex ICT systems such as the IoT. With established techniques drawn from attack trees and reliability analysis providing needed points of reference, graph-based analysis can provide a framework for considering the role of suppliers in such systems. We present such a framework here while highlighting the need for a component-centered model. Given resource limitations when applying this model to existing systems, we study various classes of uncertainties in model development, including structural uncertainties and uncertainties in the magnitude of estimated event probabilities. Using case studies, we find that structural uncertainties constitute a greater challenge to model utility and as such should receive particular attention. Best practices in the face of these uncertainties are proposed.

2022-08-26
Nedosekin, Alexey O., Abdoulaeva, Zinaida I., Zhuk, Alexander E., Konnikov, Evgenii A..  2021.  Resilience Management of an Industrial Enterprise in the Face of Uncertainty. 2021 XXIV International Conference on Soft Computing and Measurements (SCM). :215—217.
Purpose: Determine the main theoretical aspects of managing the resilience of an industrial enterprise in conditions of uncertainty. Method: The static control methods include the technology of the matrix aggregate computer (MAC) and the R-lenses, and the dynamic control methods - the technology based on the 4x6 matrix model. All these methods are based on the results of the theory of fuzzy sets and soft computing. Result: A comparative analysis of the resilience of 82 largest industrial enterprises in five industry classes was carried out, R-lenses were constructed for these classes, and the main factors affecting the resilience of industrial companies were evaluated. Conclusions: The central problem points in assessing and ensuring the resilience of enterprises are: a) correct modeling of external disturbances; b) ensuring the statistical homogeneity of the source data array.
Ding, Zhaohao, Yu, Kaiyuan, Guo, Jinran, Wang, Cheng, Tang, Fei.  2021.  Operational Security Assessment for Transmission System Adopting Dynamic Line Rating Mechanism. 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :176–181.
The widely adopted dynamic line rating (DLR) mechanism can improve the operation efficiency for industrial and commercial power systems. However, the predicted environmental parameters used in DLR bring great uncertainty to transmission line capacity estimation and may introduce system security risk if over-optimistic estimation is adopted in the operation process, which could affect the electrical safety of industrial and commercial power systems in multiple cases. Therefore, it becomes necessary to establish a system operation security assessment model to reduce the risk and provide operational guidance to enhance electrical safety. This paper aims to solve the electrical safety problems caused by the transmission line under DLR mechanism. An operation security assessment method of transmission lines considering DLR uncertainty is proposed to visualize the safety margin under the given operation strategy and optimally setting transmission line capacity while taking system safety into account. With the help of robust optimization (RO) techniques, the uncertainty is characterized and a risk-averse transmission line rating guidance can be established to determine the safety margin of line capacity for system operation. In this way, the operational security for industrial and commercial power systems can be enhanced by reducing the unsafe conditions while the operational efficiency benefit provided by DLR mechanism still exist.
Yuan, Quan, Ye, Yujian, Tang, Yi, Liu, Xuefei, Tian, Qidong.  2021.  Optimal Load Scheduling in Coupled Power and Transportation Networks. 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :1512–1517.
As a part of the global decarbonization agenda, the electrification of the transport sector involving the large-scale integration of electric vehicles (EV) constitues one of the key initiatives. However, the introduction of EV loads results in more variable electrical demand profiles and higher demand peaks, challenging power system balancing, voltage and network congestion management. In this paper, a novel optimal load scheduling approach for a coupled power and transportation network is proposed. It employs an EV charging demand forecasting model to generate the temporal-spatial distribution of the aggregate EV loads taking into account the uncertainties stemmed from the traffic condition. An AC optimal power flow (ACOPF) problem is formulated and solved to determine the scheduling decisions for the EVs, energy storage units as well as other types of flexible loads, taking into account their operational characteristics. Convex relaxation is performed to convert the original non-convex ACOPF problem to a second order conic program. Case studies demonstrate the effectiveness of the proposed scheduling strategy in accurately forecasting the EV load distribution as well as effectively alleviating the voltage deviation and network congestion in the distribution network through optimal load scheduling control decisions.
Mao, Zeyu, Sahu, Abhijeet, Wlazlo, Patrick, Liu, Yijing, Goulart, Ana, Davis, Katherine, Overbye, Thomas J..  2021.  Mitigating TCP Congestion: A Coordinated Cyber and Physical Approach. 2021 North American Power Symposium (NAPS). :1–6.
The operation of the modern power grid is becoming increasingly reliant on its underlying communication network, especially within the context of the rapidly growing integration of Distributed Energy Resources (DERs). This tight cyber-physical coupling brings uncertainties and challenges for the power grid operation and control. To help operators manage the complex cyber-physical environment, ensure the integrity, and continuity of reliable grid operation, a two-stage approach is proposed that is compatible with current ICS protocols to improve the deliverability of time critical operations. With the proposed framework, the impact Denial of Service (DoS) attack can have on a Transmission Control Protocol (TCP) session could be effectively prevented and mitigated. This coordinated approach combines the efficiency of congestion window reconfiguration and the applicability of physical-only mitigation approaches. By expanding the state and action space to encompass both the cyber and physical domains. This approach has been proven to outperform the traditional, physical-only method, in multiple network congested scenarios that were emulated in a real-time cyber-physical testbed.
Basumatary, Basundhara, Kumar, Chandan, Yadav, Dilip Kumar.  2021.  Security Risk Assessment of Information Systems in an Indeterminate Environment. 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence). :82—87.

The contemporary struggle that rests upon security risk assessment of Information Systems is its feasibility in the presence of an indeterminate environment when information is insufficient, conflicting, generic or ambiguous. But as pointed out by the security experts, most of the traditional approaches to risk assessment of information systems security are no longer practicable as they fail to deliver viable support on handling uncertainty. Therefore, to address this issue, we have anticipated a comprehensive risk assessment model based on Bayesian Belief Network (BBN) and Fuzzy Inference Scheme (FIS) process to function in an indeterminate environment. The proposed model is demonstrated and further comparisons are made on the test results to validate the reliability of the proposed model.

Telny, A. V., Monakhov, M. Yu., Aleksandrov, A. V., Matveeva, A. P..  2021.  On the Possibility of Using Cognitive Approaches in Information Security Tasks. 2021 Dynamics of Systems, Mechanisms and Machines (Dynamics). :1—6.

This article analyzes the possibilities of using cognitive approaches in forming expert assessments for solving information security problems. The experts use the contextual approach by A.Yu. Khrennikov’s as a basic model for the mathematical description of the quantum decision-making method. In the cognitive view, expert assessments are proposed to be considered as conditional probabilities with regard to the fulfillment of a set of certain conditions. However, the conditions in this approach are contextual, but not events like in Boolean algebra.

2022-08-12
Yang, Liu, Zhang, Ping, Tao, Yang.  2021.  Malicious Nodes Detection Scheme Based On Dynamic Trust Clouds for Wireless Sensor Networks. 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT). :57—61.
The randomness, ambiguity and some other uncertainties of trust relationships in Wireless Sensor Networks (WSNs) make existing trust management methods often unsatisfactory in terms of accuracy. This paper proposes a trust evaluation method based on cloud model for malicious node detection. The conversion between qualitative and quantitative sensor node trust degree is achieved. Firstly, nodes cooperate with each other to establish a standard cloud template for malicious nodes and a standard cloud template for normal nodes, so that malicious nodes have a qualitative description to be either malicious or normal. Secondly, the trust cloud template obtained during the interactions is matched against the previous standard templates to achieve the detection of malicious nodes. Simulation results demonstrate that the proposed method greatly improves the accuracy of malicious nodes detection.
Ooi, Boon-Yaik, Liew, Soung-Yue, Beh, Woan-Lin, Shirmohammadi, Shervin.  2021.  Inter-Batch Gap Filling Using Compressive Sampling for Low-Cost IoT Vibration Sensors. 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). :1—6.
To measure machinery vibration, a sensor system consisting of a 3-axis accelerometer, ADXL345, attached to a self-contained system-on-a-chip with integrated Wi-Fi capabilities, ESP8266, is a low-cost solution. In this work, we first show that in such a system, the widely used direct-read-and-send method which samples and sends individually acquired vibration data points to the server is not effective, especially using Wi-Fi connection. We show that the micro delays in each individual data transmission will limit the sensor sampling rate and will also affect the time of the acquired data points not evenly spaced. Then, we propose that vibration should be sampled in batches before sending the acquired data out from the sensor node. The vibration for each batch should be acquired continuously without any form of interruption in between the sampling process to ensure the data points are evenly spaced. To fill the data gaps between the batches, we propose the use of compressive sampling technique. Our experimental results show that the maximum sampling rate of the direct-read-and-send method is 350Hz with a standard uncertainty of 12.4, and the method loses more information compared to our proposed solution that can measure the vibration wirelessly and continuously up to 633Hz. The gaps filled using compressive sampling can achieve an accuracy in terms of mean absolute error (MAE) of up to 0.06 with a standard uncertainty of 0.002, making the low-cost vibration sensor node a cost-effective solution.
2022-07-29
Ruderman, Michael.  2021.  Robust output feedback control of non-collocated low-damped oscillating load. 2021 29th Mediterranean Conference on Control and Automation (MED). :639–644.
For systems with order of dynamics higher than two and oscillating loads with low damping, a non-collocation of the sensing and control can deteriorate robustness of the feedback and, in worst case, even bring it to instability. Furthermore, for a contactless sensing of the oscillating mechanical load, like in the system under investigation, the control structure is often restricted to the single proportional feedback only. This paper proposes a novel robust feedback control scheme for a low-damped fourth-order system using solely the measured load displacement. For reference tracking, the loop shaping design relies on a band reject filter, while the plant uncertainties are used as robustness measure for determining the feedback gain. Since prime uncertainties are due to the stiffness of elastic link, correspondingly connecting spring, and due to the gain of actuator transducer, the loop sensitivity function with additive plant variation is used for robustness measure. In order to deal with unknown disturbances, which are inherently exciting the load oscillations independently of the loop shaping performance, an output delay-based compensator is proposed as a second control-degree-of-freedom. That one requires an estimate of the load oscillation frequency only and does not affect the shaped open-loop behavior, correspondingly sensitivity function. An extensive numerical setup of the modeled system, a two-mass oscillator with contactless sensing of the load under gravity and low damping of the connecting spring, is used for the control evaluation and assessment of its robustness.
2022-07-28
Qian, Tiantian, Yang, Shengchun, Wang, Shenghe, Pan, Dong, Geng, Jian, Wang, Ke.  2021.  Static Security Analysis of Source-Side High Uncertainty Power Grid Based on Deep Learning. 2021 China International Conference on Electricity Distribution (CICED). :973—975.
As a large amount of renewable energy is injected into the power grid, the source side of the power grid becomes extremely uncertain. Traditional static safety analysis methods based on pure physical models can no longer quickly and reliably give analysis results. Therefore, this paper proposes a deep learning-based static security analytical method. First, the static security assessment index of the power grid under the N-1 principle is proposed. Secondly, a neural network model and its input and output data for static safety analysis problems are designed. Finally, the validity of the proposed method was verified by IEEE grid data. Experiments show that the proposed method can quickly and accurately give the static security analysis results of the source-side high uncertainty grid.
2022-07-15
Luo, Yun, Chen, Yuling, Li, Tao, Wang, Yilei, Yang, Yixian.  2021.  Using information entropy to analyze secure multi-party computation protocol. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :312—318.

Secure multi-party computation(SMPC) is an important research field in cryptography, secure multi-party computation has a wide range of applications in practice. Accordingly, information security issues have arisen. Aiming at security issues in Secure multi-party computation, we consider that semi-honest participants have malicious operations such as collusion in the process of information interaction, gaining an information advantage over honest parties through collusion which leads to deviations in the security of the protocol. To solve this problem, we combine information entropy to propose an n-round information exchange protocol, in which each participant broadcasts a relevant information value in each round without revealing additional information. Through the change of the uncertainty of the correct result value in each round of interactive information, each participant cannot determine the correct result value before the end of the protocol. Security analysis shows that our protocol guarantees the security of the output obtained by the participants after the completion of the protocol.

2022-07-12
ERÇİN, Mehmet Serhan, YOLAÇAN, Esra Nergis.  2021.  A system for redicting SQLi and XSS Attacks. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :155—160.
In this study, it is aimed to reduce False-Alarm levels and increase the correct detection rate in order to reduce this uncertainty. Within the scope of the study, 13157 SQLi and XSS type malicious and 10000 normal HTTP Requests were used. All HTTP requests were received from the same web server, and it was observed that normal requests and malicious requests were close to each other. In this study, a novel approach is presented via both digitization and expressing the data with words in the data preprocessing stages. LSTM, MLP, CNN, GNB, SVM, KNN, DT, RF algorithms were used for classification and the results were evaluated with accuracy, precision, recall and F1-score metrics. As a contribution of this study, we can clearly express the following inferences. Each payload even if it seems different which has the same impact maybe that we can clearly view after the preprocessing phase. After preprocessing we are calculating euclidean distances which brings and gives us the relativity between expressions. When we put this relativity as an entry data to machine learning and/or deep learning models, perhaps we can understand the benign request or the attack vector difference.
2022-07-05
Park, Ho-rim, Hwang, Kyu-hong, Ha, Young-guk.  2021.  An Object Detection Model Robust to Out-of-Distribution Data. 2021 IEEE International Conference on Big Data and Smart Computing (BigComp). :275—278.
Most of the studies of the existing object detection models are studies to better detect the objects to be detected. The problem of false detection of objects that should not be detected is not considered. When an object detection model that does not take this problem into account is applied to an industrial field close to humans, false detection can lead to a dangerous situation that greatly interferes with human life. To solve this false detection problem, this paper proposes a method of fine-tuning the backbone neural network model of the object detection model using the Outlier Exposure method and applying the class-specific uncertainty constant to the confidence score to detect the object.
2022-06-10
Bures, Tomas, Gerostathopoulos, Ilias, Hnětynka, Petr, Seifermann, Stephan, Walter, Maximilian, Heinrich, Robert.  2021.  Aspect-Oriented Adaptation of Access Control Rules. 2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). :363–370.
Cyber-physical systems (CPS) and IoT systems are nowadays commonly designed as self-adaptive, endowing them with the ability to dynamically reconFigure to reflect their changing environment. This adaptation concerns also the security, as one of the most important properties of these systems. Though the state of the art on adaptivity in terms of security related to these systems can often deal well with fully anticipated situations in the environment, it becomes a challenge to deal with situations that are not or only partially anticipated. This uncertainty is however omnipresent in these systems due to humans in the loop, open-endedness and only partial understanding of the processes happening in the environment. In this paper, we partially address this challenge by featuring an approach for tackling access control in face of partially unanticipated situations. We base our solution on special kind of aspects that build on existing access control system and create a second level of adaptation that addresses the partially unanticipated situations by modifying access control rules. The approach is based on our previous work where we have analyzed and classified uncertainty in security and trust in such systems and have outlined the idea of access-control related situational patterns. The aspects that we present in this paper serve as means for application-specific specialization of the situational patterns. We showcase our approach on a simplified but real-life example in the domain of Industry 4.0 that comes from one of our industrial projects.
2022-06-09
Cobb, Adam D., Jalaian, Brian A., Bastian, Nathaniel D., Russell, Stephen.  2021.  Robust Decision-Making in the Internet of Battlefield Things Using Bayesian Neural Networks. 2021 Winter Simulation Conference (WSC). :1–12.
The Internet of Battlefield Things (IoBT) is a dynamically composed network of intelligent sensors and actuators that operate as a command and control, communications, computers, and intelligence complex-system with the aim to enable multi-domain operations. The use of artificial intelligence can help transform the IoBT data into actionable insight to create information and decision advantage on the battlefield. In this work, we focus on how accounting for uncertainty in IoBT systems can result in more robust and safer systems. Human trust in these systems requires the ability to understand and interpret how machines make decisions. Most real-world applications currently use deterministic machine learning techniques that cannot incorporate uncertainty. In this work, we focus on the machine learning task of classifying vehicles from their audio recordings, comparing deterministic convolutional neural networks (CNNs) with Bayesian CNNs to show that correctly estimating the uncertainty can help lead to robust decision-making in IoBT.
Fang, Shiwei, Huang, Jin, Samplawski, Colin, Ganesan, Deepak, Marlin, Benjamin, Abdelzaher, Tarek, Wigness, Maggie B..  2021.  Optimizing Intelligent Edge-clouds with Partitioning, Compression and Speculative Inference. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :892–896.
Internet of Battlefield Things (IoBTs) are well positioned to take advantage of recent technology trends that have led to the development of low-power neural accelerators and low-cost high-performance sensors. However, a key challenge that needs to be dealt with is that despite all the advancements, edge devices remain resource-constrained, thus prohibiting complex deep neural networks from deploying and deriving actionable insights from various sensors. Furthermore, deploying sophisticated sensors in a distributed manner to improve decision-making also poses an extra challenge of coordinating and exchanging data between the nodes and server. We propose an architecture that abstracts away these thorny deployment considerations from an end-user (such as a commander or warfighter). Our architecture can automatically compile and deploy the inference model into a set of distributed nodes and server while taking into consideration of the resource availability, variation, and uncertainties.
2022-05-10
Salaou, Allassane Issa, Ghomari, Abdelghani.  2021.  Fuzzy ontology-based complex and uncertain video surveillance events recognition. 2021 International Conference on Information Systems and Advanced Technologies (ICISAT). :1–5.

Nowadays, video surveillance systems are part of our daily life, because of their role in ensuring the security of goods and people this generates a huge amount of video data. Thus, several research works based on the ontology paradigm have tried to develop an efficient system to index and search precisely a very large volume of videos. Due to their semantic expressiveness, ontologies are undoubtedly very much in demand in recent years in the field of video surveillance to overcome the problem of the semantic gap between the interpretation of the data extracted from the low level and the high-level semantics of the video. Despite its good expressiveness of semantics, a classical ontology may not be sufficient for good handling of uncertainty, which is however commonly present in the video surveillance domain, hence the need to consider a new ontological approach that will better represent uncertainty. Fuzzy logic is recognized as a powerful tool for dealing with vague, incomplete, imperfect, or uncertain data or information. In this work, we develop a new ontological approach based on fuzzy logic. All the relevant fuzzy concepts such as Video\_Objects, Video\_Events, Video\_Sequences, that could appear in a video surveillance domain are well represented with their fuzzy Ontology DataProperty and the fuzzy relations between them (Ontology ObjectProperty). To achieve this goal, the new fuzzy video surveillance ontology is implemented using the fuzzy ontology web language 2 (fuzzy owl2) which is an extension of the standard semantic web language, ontology web language 2 (owl2).

2022-05-03
HAMRIOUI, Sofiane, BOKHARI, Samira.  2021.  A new Cybersecurity Strategy for IoE by Exploiting an Optimization Approach. 2021 12th International Conference on Information and Communication Systems (ICICS). :23—28.

Today's companies are increasingly relying on Internet of Everything (IoE) to modernize their operations. The very complexes characteristics of such system expose their applications and their exchanged data to multiples risks and security breaches that make them targets for cyber attacks. The aim of our work in this paper is to provide an cybersecurity strategy whose objective is to prevent and anticipate threats related to the IoE. An economic approach is used in order to help to take decisions according to the reduction of the risks generated by the non definition of the appropriate levels of security. The considered problem have been resolved by exploiting a combinatorial optimization approach with a practical case of knapsack. We opted for a bi-objective modeling under uncertainty with a constraint of cardinality and a given budget to be respected. To guarantee a robustness of our strategy, we have also considered the criterion of uncertainty by taking into account all the possible threats that can be generated by a cyber attacks over IoE. Our strategy have been implemented and simulated under MATLAB environement and its performance results have been compared to those obtained by NSGA-II metaheuristic. Our proposed cyber security strategy recorded a clear improvment of efficiency according to the optimization of the security level and cost parametrs.

2022-04-20
Giraldo, Jairo, Cardenas, Alvaro, Kantarcioglu, Murat.  2017.  Security and Privacy Trade-Offs in CPS by Leveraging Inherent Differential Privacy. 2017 IEEE Conference on Control Technology and Applications (CCTA). :1313–1318.
Cyber-physical systems are subject to natural uncertainties and sensor noise that can be amplified/attenuated due to feedback. In this work, we want to leverage these properties in order to define the inherent differential privacy of feedback-control systems without the addition of an external differential privacy noise. If larger levels of privacy are required, we introduce a methodology to add an external differential privacy mechanism that injects the minimum amount of noise that is needed. On the other hand, we show how the combination of inherent and external noise affects system security in terms of the impact that integrity attacks can impose over the system while remaining undetected. We formulate a bilevel optimization problem to redesign the control parameters in order to minimize the attack impact for a desired level of inherent privacy.