Visible to the public Biblio

Filters: Keyword is median filters  [Clear All Filters]
2021-04-08
Zhang, J., Liao, Y., Zhu, X., Wang, H., Ding, J..  2020.  A Deep Learning Approach in the Discrete Cosine Transform Domain to Median Filtering Forensics. IEEE Signal Processing Letters. 27:276—280.
This letter presents a novel median filtering forensics approach, based on a convolutional neural network (CNN) with an adaptive filtering layer (AFL), which is built in the discrete cosine transform (DCT) domain. Using the proposed AFL, the CNN can determine the main frequency range closely related with the operational traces. Then, to automatically learn the multi-scale manipulation features, a multi-scale convolutional block is developed, exploring a new multi-scale feature fusion strategy based on the maxout function. The resultant features are further processed by a convolutional stream with pooling and batch normalization operations, and finally fed into the classification layer with the Softmax function. Experimental results show that our proposed approach is able to accurately detect the median filtering manipulation and outperforms the state-of-the-art schemes, especially in the scenarios of low image resolution and serious compression loss.
Rhee, K. H..  2020.  Composition of Visual Feature Vector Pattern for Deep Learning in Image Forensics. IEEE Access. 8:188970—188980.

In image forensics, to determine whether the image is impurely transformed, it extracts and examines the features included in the suspicious image. In general, the features extracted for the detection of forgery images are based on numerical values, so it is somewhat unreasonable to use in the CNN structure for image classification. In this paper, the extraction method of a feature vector is using a least-squares solution. Treat a suspicious image like a matrix and its solution to be coefficients as the feature vector. Get two solutions from two images of the original and its median filter residual (MFR). Subsequently, the two features were formed into a visualized pattern and then fed into CNN deep learning to classify the various transformed images. A new structure of the CNN net layer was also designed by hybrid with the inception module and the residual block to classify visualized feature vector patterns. The performance of the proposed image forensics detection (IFD) scheme was measured with the seven transformed types of image: average filtered (window size: 3 × 3), gaussian filtered (window size: 3 × 3), JPEG compressed (quality factor: 90, 70), median filtered (window size: 3 × 3, 5 × 5), and unaltered. The visualized patterns are fed into the image input layer of the designed CNN hybrid model. Throughout the experiment, the accuracy of median filtering detection was 98% over. Also, the area under the curve (AUC) by sensitivity (TP: true positive rate) and 1-specificity (FP: false positive rate) results of the proposed IFD scheme approached to `1' on the designed CNN hybrid model. Experimental results show high efficiency and performance to classify the various transformed images. Therefore, the grade evaluation of the proposed scheme is “Excellent (A)”.

2018-03-19
Chen, Z., Tondi, B., Li, X., Ni, R., Zhao, Y., Barni, M..  2017.  A Gradient-Based Pixel-Domain Attack against SVM Detection of Global Image Manipulations. 2017 IEEE Workshop on Information Forensics and Security (WIFS). :1–6.

We present a gradient-based attack against SVM-based forensic techniques relying on high-dimensional SPAM features. As opposed to prior work, the attack works directly in the pixel domain even if the relationship between pixel values and SPAM features can not be inverted. The proposed method relies on the estimation of the gradient of the SVM output with respect to pixel values, however it departs from gradient descent methodology due to the necessity of preserving the integer nature of pixels and to reduce the effect of the attack on image quality. A fast algorithm to estimate the gradient is also introduced to reduce the complexity of the attack. We tested the proposed attack against SVM detection of histogram stretching, adaptive histogram equalization and median filtering. In all cases the attack succeeded in inducing a decision error with a very limited distortion, the PSNR between the original and the attacked images ranging from 50 to 70 dBs. The attack is also effective in the case of attacks with Limited Knowledge (LK) when the SVM used by the attacker is trained on a different dataset with respect to that used by the analyst.

2017-02-21
H. Kiragu, G. Kamucha, E. Mwangi.  2015.  "A fast procedure for acquisition and reconstruction of magnetic resonance images using compressive sampling". AFRICON 2015. :1-5.

This paper proposes a fast and robust procedure for sensing and reconstruction of sparse or compressible magnetic resonance images based on the compressive sampling theory. The algorithm starts with incoherent undersampling of the k-space data of the image using a random matrix. The undersampled data is sparsified using Haar transformation. The Haar transform coefficients of the k-space data are then reconstructed using the orthogonal matching Pursuit algorithm. The reconstructed coefficients are inverse transformed into k-space data and then into the image in spatial domain. Finally, a median filter is used to suppress the recovery noise artifacts. Experimental results show that the proposed procedure greatly reduces the image data acquisition time without significantly reducing the image quality. The results also show that the error in the reconstructed image is reduced by median filtering.

2015-05-04
Hui Zeng, Tengfei Qin, Xiangui Kang, Li Liu.  2014.  Countering anti-forensics of median filtering. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. :2704-2708.

The statistical fingerprints left by median filtering can be a valuable clue for image forensics. However, these fingerprints may be maliciously erased by a forger. Recently, a tricky anti-forensic method has been proposed to remove median filtering traces by restoring images' pixel difference distribution. In this paper, we analyze the traces of this anti-forensic technique and propose a novel counter method. The experimental results show that our method could reveal this anti-forensics effectively at low computation load. According to our best knowledge, it's the first work on countering anti-forensics of median filtering.