Biblio
Improved safety, high mobility and environmental concerns in transportation systems across the world and the corresponding developments in information and communication technologies continue to drive attention towards Intelligent Transportation Systems (ITS). This is evident in advanced driver-assistance systems such as lane departure warning, adaptive cruise control and collision avoidance. However, in connected and autonomous vehicles, the efficient functionality of these applications depends largely on the ability of a vehicle to accurately predict it operating parameters such as location and speed. The ability to predict the immediate future/next location (or speed) of a vehicle or its ability to predict neighbors help in guaranteeing integrity, availability and accountability, thus boosting safety and resiliency of the Vehicular Network for Mobile Cyber Physical Systems (VCPS). In this paper, we proposed a secure movement-prediction for connected vehicles by using Kalman filter. Specifically, Kalman filter predicts the locations and speeds of individual vehicles with reference to already observed and known information such posted legal speed limit, geographic/road location, direction etc. The aim is to achieve resilience through the predicted and exchanged information between connected moving vehicles in an adaptive manner. By being able to predict their future locations, the following vehicle is able to adjust its position more accurately to avoid collision and to ensure optimal information exchange among vehicles.
With self-driving cars making their way on to our roads, we ask not what it would take for them to gain acceptance among consumers, but what impact they may have on other drivers. How they will be perceived and whether they will be trusted will likely have a major effect on traffic flow and vehicular safety. This work first undertakes an exploratory factor analysis to validate a trust scale for human-robot interaction and shows how previously validated metrics and general trust theory support a more complete model of trust that has increased applicability in the driving domain. We experimentally test this expanded model in the context of human-automation interaction during simulated driving, revealing how using these dimensions uncovers significant biases within human-robot trust that may have particularly deleterious effects when it comes to sharing our future roads with automated vehicles.
Road accidents are challenging threat in the present scenario. In India there are 5, 01,423 road accidents in 2015. A day 400 hundred deaths are forcing to India to take car safety sincerely. The common cause for road accidents is driver's distraction. In current world the people are dominated by the tablet PC and other hand held devices. The VANET technology is a vehicle-to-vehicle communication; here the main challenge will be to deliver qualified communication during mobility. The paper proposes a standard new restricted lightweight authentication protocol utilizing key agreement theme for VANETs. Inside the planned topic, it has three sorts of validations: 1) V2V 2) V2CH; and 3) CH and RSU. Aside from this authentication, the planned topic conjointly keeps up mystery keys between RSUs for the safe communication. Thorough informal security analysis demonstrates the planned subject is skilled to guard different malicious attack. In addition, the NS2 Simulation exhibits the possibility of the proposed plan in VANET background.