Visible to the public Biblio

Filters: Keyword is road safety  [Clear All Filters]
2020-07-27
Lambert, Christoph, Völp, Marcus, Decouchant, Jérémie, Esteves-Verissimo, Paulo.  2018.  Towards Real-Time-Aware Intrusion Tolerance. 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS). :269–270.
Technologies such as Industry 4.0 or assisted/autonomous driving are relying on highly customized cyber-physical realtime systems. Those systems are designed to match functional safety regulations and requirements such as EN ISO 13849, EN IEC 62061 or ISO 26262. However, as systems - especially vehicles - are becoming more connected and autonomous, they become more likely to suffer from new attack vectors. New features may meet the corresponding safety requirements but they do not consider adversaries intruding through security holes with the purpose of bringing vehicles into unsafe states. As research goal, we want to bridge the gap between security and safety in cyber-physical real-time systems by investigating real-time-aware intrusion-tolerant architectures for automotive use-cases.
2020-06-19
Chowdhury, Abdullahi, Karmakar, Gour, Kamruzzaman, Joarder.  2019.  Trusted Autonomous Vehicle: Measuring Trust using On-Board Unit Data. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :787—792.

Vehicular Ad-hoc Networks (VANETs) play an essential role in ensuring safe, reliable and faster transportation with the help of an Intelligent Transportation system. The trustworthiness of vehicles in VANETs is extremely important to ensure the authenticity of messages and traffic information transmitted in extremely dynamic topographical conditions where vehicles move at high speed. False or misleading information may cause substantial traffic congestions, road accidents and may even cost lives. Many approaches exist in literature to measure the trustworthiness of GPS data and messages of an Autonomous Vehicle (AV). To the best of our knowledge, they have not considered the trustworthiness of other On-Board Unit (OBU) components of an AV, along with GPS data and transmitted messages, though they have a substantial relevance in overall vehicle trust measurement. In this paper, we introduce a novel model to measure the overall trustworthiness of an AV considering four different OBU components additionally. The performance of the proposed method is evaluated with a traffic simulation model developed by Simulation of Urban Mobility (SUMO) using realistic traffic data and considering different levels of uncertainty.

2020-05-08
Ming, Liang, Zhao, Gang, Huang, Minhuan, Kuang, Xiaohui, Li, Hu, Zhang, Ming.  2018.  Security Analysis of Intelligent Transportation Systems Based on Simulation Data. 2018 1st International Conference on Data Intelligence and Security (ICDIS). :184—187.

Modern vehicles in Intelligent Transportation Systems (ITS) can communicate with each other as well as roadside infrastructure units (RSUs) in order to increase transportation efficiency and road safety. For example, there are techniques to alert drivers in advance about traffic incidents and to help them avoid congestion. Threats to these systems, on the other hand, can limit the benefits of these technologies. Securing ITS itself is an important concern in ITS design and implementation. In this paper, we provide a security model of ITS which extends the classic layered network security model with transportation security and information security, and gives a reference for designing ITS architectures. Based on this security model, we also present a classification of ITS threats for defense. Finally a proof-of-concept example with malicious nodes in an ITS system is also given to demonstrate the impact of attacks. We analyzed the threat of malicious nodes and their effects to commuters, like increasing toll fees, travel distances, and travel times etc. Experimental results from simulations based on Veins shows the threats will bring about 43.40% more total toll fees, 39.45% longer travel distances, and 63.10% more travel times.

2020-04-13
Ruehrup, Stefan, Krenn, Stephan.  2019.  Towards Privacy in Geographic Message Dissemination for Connected Vehicles. 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE). :1–6.
With geographic message dissemination, connected vehicles can be served with traffic information in their proximity, thereby positively impacting road safety, traffic management, or routing. Since such messages are typically relevant in a small geographic area, servers only distribute messages to affected vehicles for efficiency reasons. One main challenge is to maintain scalability of the server infrastructure when collecting location updates from vehicles and determining the relevant group of vehicles when messages are distributed to a geographic relevance area, while at the same time respecting the individual user's privacy in accordance with legal regulations. In this paper, we present a framework for geographic message dissemination following the privacy-by-design and privacy-by-default principles, without having to accept efficiency drawbacks compared to conventional server-client based approaches.
2020-03-02
Ayaida, Marwane, Messai, Nadhir, Wilhelm, Geoffrey, Najeh, Sameh.  2019.  A Novel Sybil Attack Detection Mechanism for C-ITS. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :913–918.

Cooperative Intelligent Transport Systems (C-ITS) are expected to play an important role in our lives. They will improve the traffic safety and bring about a revolution on the driving experience. However, these benefits are counterbalanced by possible attacks that threaten not only the vehicle's security, but also passengers' lives. One of the most common attacks is the Sybil attack, which is even more dangerous than others because it could be the starting point of many other attacks in C-ITS. This paper proposes a distributed approach allowing the detection of Sybil attacks by using the traffic flow theory. The key idea here is that each vehicle will monitor its neighbourhood in order to detect an eventual Sybil attack. This is achieved by a comparison between the real accurate speed of the vehicle and the one estimated using the V2V communications with vehicles in the vicinity. The estimated speed is derived by using the traffic flow fundamental diagram of the road's portion where the vehicles are moving. This detection algorithm is validated through some extensive simulations conducted using the well-known NS3 network simulator with SUMO traffic simulator.

2019-05-01
Sowah, R., Ofoli, A., Koumadi, K., Osae, G., Nortey, G., Bempong, A. M., Agyarkwa, B., Apeadu, K. O..  2018.  Design and Implementation of a Fire Detection andControl System with Enhanced Security and Safety for Automobiles Using Neuro-Fuzzy Logic. 2018 IEEE 7th International Conference on Adaptive Science Technology (ICAST). :1-8.

Automobiles provide comfort and mobility to owners. While they make life more meaningful they also pose challenges and risks in their safety and security mechanisms. Some modern automobiles are equipped with anti-theft systems and enhanced safety measures to safeguard its drivers. But at times, these mechanisms for safety and secured operation of automobiles are insufficient due to various mechanisms used by intruders and car thieves to defeat them. Drunk drivers cause accidents on our roads and thus the need to safeguard the driver when he is intoxicated and render the car to be incapable of being driven. These issues merit an integrated approach to safety and security of automobiles. In the light of these challenges, an integrated microcontroller-based hardware and software system for safety and security of automobiles to be fixed into existing vehicle architecture, was designed, developed and deployed. The system submodules are: (1) Two-step ignition for automobiles, namely: (a) biometric ignition and (b) alcohol detection with engine control, (2) Global Positioning System (GPS) based vehicle tracking and (3) Multisensor-based fire detection using neuro-fuzzy logic. All submodules of the system were implemented using one microcontroller, the Arduino Mega 2560, as the central control unit. The microcontroller was programmed using C++11. The developed system performed quite well with the tests performed on it. Given the right conditions, the alcohol detection subsystem operated with a 92% efficiency. The biometric ignition subsystem operated with about 80% efficiency. The fire detection subsystem operated with a 95% efficiency in locations registered with the neuro-fuzzy system. The vehicle tracking subsystem operated with an efficiency of 90%.

2019-02-13
Mamun, A. Al, Mamun, M. Abdullah Al, Shikfa, A..  2018.  Challenges and Mitigation of Cyber Threat in Automated Vehicle: An Integrated Approach. 2018 International Conference of Electrical and Electronic Technologies for Automotive. :1–6.
The technological development of automated vehicles opens novel cybersecurity threats and risks for road safety. Increased connectivity often results in increased risks of a cyber-security attacks, which is one of the biggest challenges for the automotive industry that undergoes a profound transformation. State of the art studies evaluated potential attacks and recommended possible measures, from technical and organizational perspective to face these challenges. In this position paper, we review these techniques and methods and show that some of the different solutions complement each other while others overlap or are even incompatible or contradictory. Based on this gap analysis, we advocate for the need of a comprehensive framework that integrates technical and organizational mitigation measures to enhance the cybersecurity of automotive vehicles.
2019-01-31
Lyu, C., Pande, A., Zhang, Y., Gu, D., Mohapatra, P..  2018.  FastTrust: Fast and Anonymous Spatial-Temporal Trust for Connected Cars on Expressways. 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–9.

Connected cars have received massive attention in Intelligent Transportation System. Many potential services, especially safety-related ones, rely on spatial-temporal messages periodically broadcast by cars. Without a secure authentication algorithm, malicious cars may send out invalid spatial-temporal messages and then deny creating them. Meanwhile, a lot of private information may be disclosed from these spatial-temporal messages. Since cars move on expressways at high speed, any authentication must be performed in real-time to prevent crashes. In this paper, we propose a Fast and Anonymous Spatial-Temporal Trust (FastTrust) mechanism to ensure these properties. In contrast to most authentication protocols which rely on fixed infrastructures, FastTrust is distributed and mostly designed on symmetric-key cryptography and an entropy-based commitment, and is able to fast authenticate spatial-temporal messages. FastTrust also ensures the anonymity and unlinkability of spatial-temporal messages by developing a pseudonym-varying scheduling scheme on cars. We provide both analytical and simulation evaluations to show that FastTrust achieves the security and privacy properties. FastTrust is low-cost in terms of communication and computational resources, authenticating 20 times faster than existing Elliptic Curve Digital Signature Algorithm.

2018-05-02
Yao, Y., Xiao, B., Wu, G., Liu, X., Yu, Z., Zhang, K., Zhou, X..  2017.  Voiceprint: A Novel Sybil Attack Detection Method Based on RSSI for VANETs. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :591–602.

Vehicular Ad Hoc Networks (VANETs) enable vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications that bring many benefits and conveniences to improve the road safety and drive comfort in future transportation systems. Sybil attack is considered one of the most risky threats in VANETs since a Sybil attacker can generate multiple fake identities with false messages to severely impair the normal functions of safety-related applications. In this paper, we propose a novel Sybil attack detection method based on Received Signal Strength Indicator (RSSI), Voiceprint, to conduct a widely applicable, lightweight and full-distributed detection for VANETs. To avoid the inaccurate position estimation according to predefined radio propagation models in previous RSSI-based detection methods, Voiceprint adopts the RSSI time series as the vehicular speech and compares the similarity among all received time series. Voiceprint does not rely on any predefined radio propagation model, and conducts independent detection without the support of the centralized infrastructure. It has more accurate detection rate in different dynamic environments. Extensive simulations and real-world experiments demonstrate that the proposed Voiceprint is an effective method considering the cost, complexity and performance.

2018-02-02
Kokaly, S..  2017.  Managing Assurance Cases in Model Based Software Systems. 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C). :453–456.

Software has emerged as a significant part of many domains, including financial service platforms, social networks and vehicle control. Standards organizations have responded to this by creating regulations to address issues such as safety and privacy. In this context, compliance of software with standards has emerged as a key issue. For software development organizations, compliance is a complex and costly goal to achieve and is often accomplished by producing so-called assurance cases, which demonstrate that the system indeed satisfies the property imposed by a standard (e.g., safety, privacy, security). As systems and standards undergo evolution for a variety of reasons, maintaining assurance cases multiplies the effort. In this work, we propose to exploit the connection between the field of model management and the problem of compliance management and propose methods that use model management techniques to address compliance scenarios such as assurance case evolution and reuse. For validation, we ground our approaches on the automotive domain and the ISO 26262 standard for functional safety of road vehicles.

Villarreal-Vasquez, M., Bhargava, B., Angin, P..  2017.  Adaptable Safety and Security in V2X Systems. 2017 IEEE International Congress on Internet of Things (ICIOT). :17–24.

With the advances in the areas of mobile computing and wireless communications, V2X systems have become a promising technology enabling deployment of applications providing road safety, traffic efficiency and infotainment. Due to their increasing popularity, V2X networks have become a major target for attackers, making them vulnerable to security threats and network conditions, and thus affecting the safety of passengers, vehicles and roads. Existing research in V2X does not effectively address the safety, security and performance limitation threats to connected vehicles, as a result of considering these aspects separately instead of jointly. In this work, we focus on the analysis of the tradeoffs between safety, security and performance of V2X systems and propose a dynamic adaptability approach considering all three aspects jointly based on application needs and context to achieve maximum safety on the roads using an Internet of vehicles. Experiments with a simple V2V highway scenario demonstrate that an adaptive safety/security approach is essential and V2X systems have great potential for providing low reaction times.

2017-12-20
Alheeti, K. M. A., McDonald-Maier, K..  2017.  An intelligent security system for autonomous cars based on infrared sensors. 2017 23rd International Conference on Automation and Computing (ICAC). :1–5.
Safety and non-safety applications in the external communication systems of self-driving vehicles require authentication of control data, cooperative awareness messages and notification messages. Traditional security systems can prevent attackers from hacking or breaking important system functionality in autonomous vehicles. This paper presents a novel security system designed to protect vehicular ad hoc networks in self-driving and semi-autonomous vehicles that is based on Integrated Circuit Metric technology (ICMetrics). ICMetrics has the ability to secure communication systems in autonomous vehicles using features of the autonomous vehicle system itself. This security system is based on unique extracted features from vehicles behaviour and its sensors. Specifically, features have been extracted from bias values of infrared sensors which are used alongside semantically extracted information from a trace file of a simulated vehicular ad hoc network. The practical experimental implementation and evaluation of this system demonstrates the efficiency in identifying of abnormal/malicious behaviour typical for an attack.
2017-03-08
Paone, J., Bolme, D., Ferrell, R., Aykac, D., Karnowski, T..  2015.  Baseline face detection, head pose estimation, and coarse direction detection for facial data in the SHRP2 naturalistic driving study. 2015 IEEE Intelligent Vehicles Symposium (IV). :174–179.

Keeping a driver focused on the road is one of the most critical steps in insuring the safe operation of a vehicle. The Strategic Highway Research Program 2 (SHRP2) has over 3,100 recorded videos of volunteer drivers during a period of 2 years. This extensive naturalistic driving study (NDS) contains over one million hours of video and associated data that could aid safety researchers in understanding where the driver's attention is focused. Manual analysis of this data is infeasible; therefore efforts are underway to develop automated feature extraction algorithms to process and characterize the data. The real-world nature, volume, and acquisition conditions are unmatched in the transportation community, but there are also challenges because the data has relatively low resolution, high compression rates, and differing illumination conditions. A smaller dataset, the head pose validation study, is available which used the same recording equipment as SHRP2 but is more easily accessible with less privacy constraints. In this work we report initial head pose accuracy using commercial and open source face pose estimation algorithms on the head pose validation data set.

2017-02-27
Saravanan, S., Sabari, A., Geetha, M., priyanka, Q..  2015.  Code based community network for identifying low risk community. 2015 IEEE 9th International Conference on Intelligent Systems and Control (ISCO). :1–6.

The modern day approach in boulevard network centers on efficient factor in safe routing. The safe routing must follow up the low risk cities. The troubles in routing are a perennial one confronting people day in and day out. The common goal of everyone using a boulevard seems to be reaching the desired point through the fastest manner which involves the balancing conundrum of multiple expected and unexpected influencing factors such as time, distance, security and cost. It is universal knowledge that travelling is an almost inherent aspect in everyone's daily routine. With the gigantic and complex road network of a modern city or country, finding a low risk community for traversing the distance is not easy to achieve. This paper follows the code based community for detecting the boulevard network and fuzzy technique for identifying low risk community.

2015-05-04
Tomandl, A., Herrmann, D., Fuchs, K.-P., Federrath, H., Scheuer, F..  2014.  VANETsim: An open source simulator for security and privacy concepts in VANETs. High Performance Computing Simulation (HPCS), 2014 International Conference on. :543-550.

Aside from massive advantages in safety and convenience on the road, Vehicular Ad Hoc Networks (VANETs) introduce security risks to the users. Proposals of new security concepts to counter these risks are challenging to verify because of missing real world implementations of VANETs. To fill this gap, we introduce VANETsim, an event-driven simulation platform, specifically designed to investigate application-level privacy and security implications in vehicular communications. VANETsim focuses on realistic vehicular movement on real road networks and communication between the moving nodes. A powerful graphical user interface and an experimentation environment supports the user when setting up or carrying out experiments.