Biblio
As millions of IoT devices are interconnected together for better communication and computation, compromising even a single device opens a gateway for the adversary to access the network leading to an epidemic. It is pivotal to detect any malicious activity on a device and mitigate the threat. Among multiple feasible security threats, malware (malicious applications) poses a serious risk to modern IoT networks. A wide range of malware can replicate itself and propagate through the network via the underlying connectivity in the IoT networks making the malware epidemic inevitable. There exist several techniques ranging from heuristics to game-theory based technique to model the malware propagation and minimize the impact on the overall network. The state-of-the-art game-theory based approaches solely focus either on the network performance or the malware confinement but does not optimize both simultaneously. In this paper, we propose a throughput-aware game theory-based end-to-end IoT network security framework to confine the malware epidemic while preserving the overall network performance. We propose a two-player game with one player being the attacker and other being the defender. Each player has three different strategies and each strategy leads to a certain gain to that player with an associated cost. A tailored min-max algorithm was introduced to solve the game. We have evaluated our strategy on a 500 node network for different classes of malware and compare with existing state-of-the-art heuristic and game theory-based solutions.
This paper describes a novel distributed mobility management (DMM) scheme for the "named-object" information centric network (ICN) architecture in which the routers forward data based on unique identifiers which are dynamically mapped to the current network addresses of a device. The work proposes and evaluates two specific handover schemes namely, hard handoff with rebinding and soft handoff with multihoming intended to provide seamless data transfer with improved throughput during handovers. The evaluation of the proposed handover schemes using system simulation along with proof-of-concept implementation in ORBIT testbed is described. The proposed handoff and scheduling throughput gains are 12.5% and 44% respectively over multiple interfaces when compared to traditional IP network with equal share split scheme. The handover performance with respect to RTT and throughput demonstrate the benefits of clean slate network architecture for beyond 5G networks.
Software Defined Networking (SDN) is a major paradigm in controlling and managing number of heterogeneous networks. It's a real challenge however to secure such complex networks which are heterogeneous in network security. The centralization of the intelligence in network presents both an opportunity as well as security threats. This paper focuses on various potential security challenges at the various levels of SDN architecture such as Denial of service (DoS) attack and its countermeasures. The paper shows the detection of DoS attck with S-FlowRT.
Observing semantic dependencies in large and heterogeneous networks is a critical task, since it is quite difficult to find the actual source of a malfunction in the case of an error. Dependencies might exist between many network nodes and among multiple hops in paths. If those dependency structures are unknown, debugging errors gets quite difficult. Since CPS and other large networks change at runtime and consists of custom software and hardware, as well as components off-the-shelf, it is necessary to be able to not only include own components in approaches to detect dependencies between nodes. In this paper we present an extension to the Information Flow Monitor approach. Our goal is that this approach should be able to handle unalterable blackbox nodes. This is quite challenging, since the IFM originally requires each network node to be compliant with the IFM protocol.
As the number of small, battery-operated, wireless-enabled devices deployed in various applications of Internet of Things (IoT), Wireless Sensor Networks (WSN), and Cyber-physical Systems (CPS) is rapidly increasing, so is the number of data streams that must be processed. In cases where data do not need to be archived, centrally processed, or federated, in-network data processing is becoming more common. For this purpose, various platforms like DRAGON, Innet, and CJF were proposed. However, these platforms assume that all nodes in the network are the same, i.e. the network is homogeneous. As Moore's law still applies, nodes are becoming smaller, more powerful, and more energy efficient each year; which will continue for the foreseeable future. Therefore, we can expect that as sensor networks are extended and updated, hardware heterogeneity will soon be common in networks - the same trend as can be seen in cloud computing infrastructures. This heterogeneity introduces new challenges in terms of choosing an in-network data processing node, as not only its location, but also its capabilities, must be considered. This paper introduces a new methodology to tackle this challenge, comprising three new algorithms - Request, Traverse, and Mixed - for efficiently locating an in-network data processing node, while taking into account not only position within the network but also hardware capabilities. The proposed algorithms are evaluated against a naïve approach and achieve up to 90% reduction in network traffic during long-term data processing, while spending a similar amount time in the discovery phase.
Nowadays, the design of a secure access authentication protocol in heterogeneous networks achieving seamless roaming across radio access technologies for mobile users (MUs) is a major technical challenge. This paper proposes a Distributed Anonymous Authentication (DAA) protocol to resolve the problems of heavy signaling overheads and long signaling delay when authentication is executed in a centralized manner. By applying MUs and point of attachments (PoAs) as group members, the adopted group signature algorithms provide identity verification directly without sharing secrets in advance, which significantly reduces signaling overheads. Moreover, MUs sign messages on behalf of the group, so that anonymity and unlinkability against PoAs are provided and thus privacy is preserved. Performance analysis confirm the advantages of DAA over existing solutions.