Biblio
This paper presents some of our first experiences and findings in the ARPA-E project ReNew100, which is to develop an operator support system to enable stable operation of power system with 100% non-synchronous (NS) generation. The key to 100% NS system, as found in many recent studies, is to establish the grid frequency reference using grid-forming (GFM) inverters. In this paper, we demonstrate in Electro-Magnetic-Transient (EMT) simulations, based on Hawai'i big island system with 100% NS capacity, that a system can be operated stably with the help of GFM inverters and appropriate controller parameters for the inverters. The dynamic security optimization (DSO) is introduced for optimizing the inverter control parameters to improve stability of the system towards N-1 contingencies. DSO is verified for five critical N-1 contingencies of big island system identified by Hawaiian Electric. The simulation results show significant stability improvement from DSO. The results in this paper share some insight, and provide a promising solution for operating grid in general with high penetration or 100% of NS generation.
This paper puts forward a dynamic reduction method of renewable energy based on N-1 safety standard of power system, which is suitable for high-voltage distribution network and can reduce the abandoned amount of renewable energy to an ideal level. On the basis of AC sensitivity coefficient, the optimization method of distribution factor suitable for single line or multi-line disconnection is proposed. Finally, taking an actual high-voltage distribution network in Germany as an example, the simulation results show that the proposed method can effectively limit the line load, and can greatly reduce the line load with less RES reduction.
This paper presents a secure reinforcement learning (RL) based control method for unknown linear time-invariant cyber-physical systems (CPSs) that are subjected to compositional attacks such as eavesdropping and covert attack. We consider the attack scenario where the attacker learns about the dynamic model during the exploration phase of the learning conducted by the designer to learn a linear quadratic regulator (LQR), and thereafter, use such information to conduct a covert attack on the dynamic system, which we refer to as doubly learning-based control and attack (DLCA) framework. We propose a dynamic camouflaging based attack-resilient reinforcement learning (ARRL) algorithm which can learn the desired optimal controller for the dynamic system, and at the same time, can inject sufficient misinformation in the estimation of system dynamics by the attacker. The algorithm is accompanied by theoretical guarantees and extensive numerical experiments on a consensus multi-agent system and on a benchmark power grid model.
The correctness of security control system strategy is very important to ensure the stability of power system. Aiming at the problem that the current security control strategy verification method is not enough to match the increasingly complex large power grid, this paper proposes a cyclic verification method of security control system strategy table based on constraints and whole process dynamic simulation. Firstly, the method is improved based on the traditional security control strategy model to make the strategy model meet certain generalization ability; And on the basis of this model, the cyclic dynamic verification of the strategy table is realized based on the constraint conditions and the whole process dynamic simulation, which not only ensures the high accuracy of strategy verification for the security control strategy of complex large power grid, but also ensures that the power system is stable and controllable. Finally, based on a certain regional power system, the optimal verification of strategy table verification experiment is realized. The experimental results show that the average processing time of the proposed method is 10.32s, and it can effectively guarantee the controllability and stability of power grid.
Aiming at the problems of imperfect dynamic verification of power grid security and stability control strategy and high test cost, a reliability test method of power grid security control system based on BP neural network and dynamic group simulation is proposed. Firstly, the fault simulation results of real-time digital simulation system (RTDS) software are taken as the data source, and the dynamic test data are obtained with the help of the existing dispatching data network, wireless virtual private network, global positioning system and other communication resources; Secondly, the important test items are selected through the minimum redundancy maximum correlation algorithm, and the test items are used to form a feature set, and then the BP neural network model is used to predict the test results. Finally, the dynamic remote test platform is tested by the dynamic whole group simulation of the security and stability control system. Compared with the traditional test methods, the proposed method reduces the test cost by more than 50%. Experimental results show that the proposed method can effectively complete the reliability test of power grid security control system based on dynamic group simulation, and reduce the test cost.