Biblio
Distributed Denial of Service (DDoS) attacks aim to make a server unresponsive by flooding the target server with a large volume of packets (Volume based DDoS attacks), by keeping connections open for a long time and exhausting the resources (Low and Slow DDoS attacks) or by targeting protocols (Protocol based attacks). Volume based DDoS attacks that flood the target server with a large number of packets are easier to detect because of the abnormality in packet flow. Low and Slow DDoS attacks, however, make the server unavailable by keeping connections open for a long time, but send traffic similar to genuine traffic, making detection of such attacks difficult. This paper proposes a solution to detect and mitigate one such Low and slow DDoS attack, Slowloris in an SDN (Software Defined Networking) environment. The proposed solution involves communication between the detection and mitigation module and the controller of the Software Defined Network to get data to detect and mitigate low and slow DDoS attack.
This paper integrates Software-Defined Networking (SDN) and Information -Centric Networking (ICN) framework to enable low latency-based stateful routing and caching management by leveraging a novel forwarding and caching strategy. The framework is implemented in a clean- slate environment that does not rely on the TCP/IP principle. It utilizes Pending Interest Tables (PIT) instead of Forwarding Information Base (FIB) to perform data dissemination among peers in the proposed IC-SDN framework. As a result, all data exchanged and cached in the system are organized in chunks with the same interest resulting in reduced packet overhead costs. Additionally, we propose an efficient caching strategy that leverages in- network caching and naming of contents through an IC-SDN controller to support off- path caching. The testbed evaluation shows that the proposed IC-SDN implementation achieves an increased throughput and reduced latency compared to the traditional information-centric environment, especially in the high load scenarios.
Software Defined Networking (SDN) is a networking paradigm that has been very popular due to its advantages over traditional networks with regard to scalability, flexibility, and its ability to solve many security issues. Nevertheless, SDN networks are exposed to new security threats and attacks, especially Distributed Denial of Service (DDoS) attacks. For this aim, we have proposed a model able to detect and mitigate attacks automatically in SDN networks using Machine Learning (ML). Different than other approaches found in literature which use the native flow features only for attack detection, our model extends the native features. The extended flow features are the average flow packet size, the number of flows to the same host as the current flow in the last 5 seconds, and the number of flows to the same host and port as the current flow in the last 5 seconds. Six ML algorithms were evaluated, namely Logistic Regression (LR), Naive Bayes (NB), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF). The experiments showed that RF is the best performing ML algorithm. Also, results showed that our model is able to detect attacks accurately and quickly, with a low probability of dropping normal traffic.
Software-defined networking (SDN) is a new networking architecture having the concept of separation of control plane and data plane that leads the existing networks to be programmable, dynamically configurable and extremely flexible. This paradigm has huge benefits to organizations and large networks, however, its security is major issue and Distributed Denial of Service (DDoS) Attack has become a serious concern for the working of SDN. In this article, we have proposed a taxonomy of DDoS Defense Mechanisms in SDN Environment. We have categorized the various DDoS detection and mitigation techniques with respect to switch intelligence, Defense Deployment, Defense Activity and Network Flow Activities.
Over the last few years, the deployment of Internet of Things (IoT) is attaining much more concern on smart computing devices. With the exponential growth of small devices and at the same time cheap prices of these sensing devices, there raises an important question for the security of the stored information as these devices generate a large amount of private data for observing and controlling purposes. Distributed Denial of Service (DDoS) attacks are current examples of major security threats to IoT devices. As yet, no standard protocol can fully ensure the security of IoT devices. But adaptive decision making along with elasticity and incessant monitoring is required. These difficulties can be resolved with the assistance of Software Defined Networking (SDN) which can viably deal with the security dangers to the IoT devices in a powerful and versatile way without hampering the lightweightness of the IoT devices. Although SDN performs quite well for managing and controlling IoT devices, security is still an open concern. Nonetheless, there are a few challenges relating to the mitigation of DDoS attacks in IoT systems implemented with SDN architecture. In this paper, a brief overview of some of the popular DDoS attack mitigation techniques and their limitations are described. Also, the challenges of implementing these techniques in SDN-based architecture to IoT devices have been presented.
The growing adoption of IoT devices is creating a huge positive impact on human life. However, it is also making the network more vulnerable to security threats. One of the major threats is malicious traffic injection attack, where the hacked IoT devices overwhelm the application servers causing large-scale service disruption. To address such attacks, we propose a Software Defined Networking based predictive alarm manager solution for malicious traffic detection and mitigation at the IoT Gateway. Our experimental results with the proposed solution confirms the detection of malicious flows with nearly 95% precision on average and at its best with around 99% precision.