Biblio
This contribution provides the implementation of a holistic operational security assessment process for both steady-state security and dynamic stability. The merging of steady-state and dynamic security assessment as a sequential process is presented. A steady-state and dynamic modeling of a VSC-HVDC was performed including curative and stabilizing measures as remedial actions. The assessment process was validated by a case study on a modified version of the Nordic 32 system. Simulation results showed that measure selection based on purely steady-state contingency analysis can lead to loss of stability in time domain. A subsequent selection of measures on the basis of the dynamic security assessment was able to guarantee the operational security for the stationary N-1 scenario as well as the power system stability.
This paper sheds light on the collaborative efforts in restoring cyber and physical subsystems of a modern power distribution system after the occurrence of an extreme weather event. The extensive cyber-physical interdependencies in the operation of power distribution systems are first introduced for investigating the functionality loss of each subsystem when the dependent subsystem suffers disruptions. A resilience index is then proposed for measuring the effectiveness of restoration activities in terms of restoration rapidity. After modeling operators' decision making for economic dispatch as a second-order cone programming problem, this paper proposes a heuristic approach for prioritizing the activities for restoring both cyber and physical subsystems. In particular, the proposed heuristic approach takes into consideration of cyber-physical interdependencies for improving the operation performance. Case studies are also conducted to validate the collaborative restoration model in the 33-bus power distribution system.
The chances of cyber-attacks have been increased because of incorporation of communication networks and information technology in power system. Main objective of the paper is to prove that attacker can launch the attack vector without the knowledge of complete network information and the injected false data can't be detected by power system operator. This paper also deals with analyzing the impact of multi-attacking strategy on the power system. This false data attacks incurs lot of damage to power system, as it misguides the power system operator. Here, we demonstrate the construction of attack vector and later we have demonstrated multiple attacking regions in IEEE 14 bus system. Impact of attack vector on the power system can be observed and it is proved that the attack cannot be detected by power system operator with the help of residue check method.
Data leakage and disclosure to attackers is a significant problem in embedded systems, considering the ability of attackers to get physical access to the systems. We present methods to protect memory data leakage in tamper-proof embedded systems. We present methods that exploit memory supply voltage manipulation to change the memory contents, leading to an operational and reusable memory or to destroy memory cell circuitry. For the case of memory data change, we present scenaria for data change to a known state and to a random state. The data change scenaria are effective against attackers who cannot detect the existence of the protection circuitry; furthermore, original data can be calculated in the case of data change to a known state, if the attacker identifies the protection circuitry and its operation. The methods that change memory contents to a random state or destroy memory cell circuitry lead to irreversible loss of the original data. However, since the known state can be used to calculate the original data.
False data injection is an on-going concern facing power system state estimation. In this work, a neural network is trained to detect the existence of false data in measurements. The proposed approach can make use of historical data, if available, by using them in the training sets of the proposed neural network model. However, the inputs of perceptron model in this work are the residual elements from the state estimation, which are highly correlated. Therefore, their dimension could be reduced by preserving the most informative features from the inputs. To this end, principal component analysis is used (i.e., a data preprocessing technique). This technique is especially efficient for highly correlated data sets, which is the case in power system measurements. The results of different perceptron models that are proposed for detection, are compared to a simple perceptron that produces identical result to the outlier detection scheme. For generating the training sets, state estimation was run for different false data on different measurements in 13-bus IEEE test system, and the residuals are saved as inputs of training sets. The testing results of the trained network show its good performance in detection of false data in measurements.
A method for the multiple faults diagnosis in linear analog circuits is presented in this paper. The proposed approach is based upon the concept named by the indirect compensation theorem. This theorem is reducing the procedure of fault diagnosis in the analog circuit to the symbolic analysis process. An extension of the indirect compensation theorem for the linear subcircuit is proposed. The indirect compensation provides equivalent replacement of the n-ports subcircuit by n norators and n fixators of voltages and currents. The proposed multiple faults diagnosis techniques can be used for evaluation of any kind of terminal characteristics of the two-port network. For calculation of the circuit determinant expressions, the Generalized Parameter Extraction Method is implemented. The main advantage of the analysis method is that it is cancellation free. It requires neither matrix nor ordinary graph description of the circuit. The process of symbolic circuit analysis is automated by the freeware computer program Cirsym which can be used online. The experimental results are presented to show the efficiency and reliability of the proposed technique.
Technological advancement enables the need of internet everywhere. The power industry is not an exception in the technological advancement which makes everything smarter. Smart grid is the advanced version of the traditional grid, which makes the system more efficient and self-healing. Synchrophasor is a device used in smart grids to measure the values of electric waves, voltages and current. The phasor measurement unit produces immense volume of current and voltage data that is used to monitor and control the performance of the grid. These data are huge in size and vulnerable to attacks. Intrusion Detection is a common technique for finding the intrusions in the system. In this paper, a big data framework is designed using various machine learning techniques, and intrusions are detected based on the classifications applied on the synchrophasor dataset. In this approach various machine learning techniques like deep neural networks, support vector machines, random forest, decision trees and naive bayes classifications are done for the synchrophasor dataset and the results are compared using metrics of accuracy, recall, false rate, specificity, and prediction time. Feature selection and dimensionality reduction algorithms are used to reduce the prediction time taken by the proposed approach. This paper uses apache spark as a platform which is suitable for the implementation of Intrusion Detection system in smart grids using big data analytics.
The smart grid is an electrical grid that has a duplex communication. This communication is between the utility and the consumer. Digital system, automation system, computers and control are the various systems of Smart Grid. It finds applications in a wide variety of systems. Some of its applications have been designed to reduce the risk of power system blackout. Dynamic vulnerability assessment is done to identify, quantify, and prioritize the vulnerabilities in a system. This paper presents a novel approach for classifying the data into one of the two classes called vulnerable or non-vulnerable by carrying out Dynamic Vulnerability Assessment (DVA) based on some data mining techniques such as Multichannel Singular Spectrum Analysis (MSSA), and Principal Component Analysis (PCA), and a machine learning tool such as Support Vector Machine Classifier (SVM-C) with learning algorithms that can analyze data. The developed methodology is tested in the IEEE 57 bus, where the cause of vulnerability is transient instability. The results show that data mining tools can effectively analyze the patterns of the electric signals, and SVM-C can use those patterns for analyzing the system data as vulnerable or non-vulnerable and determines System Vulnerability Status.
Intrusion detection has been an active field of research for more than 35 years. Numerous systems had been built based on the two fundamental detection principles, knowledge-based and behavior-based detection. Anyway, having a look at day-to-day news about data breaches and successful attacks, detection effectiveness is still limited. Even more, heavy-weight intrusion detection systems cannot be installed in every endangered environment. For example, Industrial Control Systems are typically utilized for decades, charging off huge investments of companies. Thus, some of these systems have been in operation for years, but were designed afore without security in mind. Even worse, as systems often have connections to other networks and even the Internet nowadays, an adequate protection is mandatory, but integrating intrusion detection can be extremely difficult - or even impossible to date. We propose a new lightweight current-based IDS which is using a difficult to manipulate measurement base and verifiable ground truth. Focus of our system is providing intrusion detection for ICS and SCADA on a low-priced base, easy to integrate. Dr. WATTson, a prototype implemented based on our concept provides high detection and low false alarm rates.